Markov models essentially build upon finite-state automata (FSAs)

So, we’re going to review:

▶ Where FSAs fit on the Chomsky Hierarchy
▶ Finite-State Automata (FSAs)
▶ Finite-State Transducers (FSTs)

The Chomsky Hierarchy

▶ Type 0: unrestricted grammar
e.g. NP was V,pp by NP → NP V NP
▶ Type 1: context-sensitive grammar: only one of the lefthand side symbols is replaced on the righthand side, all the others are “the context”
e.g. V NP → V DET dobj N dobj
▶ Type 1: monotonic grammar: the lefthand side contains the same number or less symbols than the righthand side

Finite-State Automata

Definition FSA: A finite-state automaton A is a 5-tuple (Σ, Q, i, F, E) where

Σ is a finite set called the alphabet
Q is a finite set of states
i ∈ Q is the initial state
F ⊆ Q is the set of final states, and
E ⊆ Q × (Σ U e) × Q is the set of transitions

Finite-State Automata (2)

S → aA
S → aB
A → bC
A → bB
B → cA
B → cC
C → aD
Finite-State Automata (2)

Deterministic Finite-State Automata

Definition DFSA:
A deterministic finite-state automaton is a 5-tuple (Σ, Q, i, F, d) where

- Σ is a finite set called the alphabet
- Q is a finite set of states
- $i \in Q$ is the initial state
- $F \subseteq Q$ is the set of final states, and
- d is the transition function that maps $Q \times \Sigma$ to Q

Important Properties of FSAs

- **determinization**: for every non-deterministic finite-state automaton there exists an equivalent deterministic FSA.
- **minimization**: for every non-deterministic finite-state automaton, there exists an equivalent deterministic automaton with a minimal number of states.

What Is in a State

Definition (state):
Given a deterministic FSA $M = (\Sigma, Q, i, F, d)$,
a state of M is a triple (x, q, y)
where $q \in Q$ and $x, y \in \Sigma^*$

Example: $x = aaaaa$, $q = S$, $y = bbbbbbbbbb$ for language a^*b^*
The "directly derives" Relation

Definition (directly derives):
Given a deterministic FSA $M = (\Sigma, Q, i, F, d)$,
a state (x, q, y) directly derives state (x', q', y'): $(x, q, y) \vdash (x', q', y')$ iff
1. there is $\sigma \in \Sigma$ such that $y = \sigma y'$ and $x' = x \sigma$ (i.e. the reading head moves right one symbol σ)
2. $d(q, \sigma) = q'$

Acceptance

Definition (acceptance):
Given a deterministic FSA $M = (\Sigma, Q, i, F, d)$ and a string $x \in \Sigma^*$
M accepts x iff there is a $q \in F$ such that $(0, i, x) \vdash^* (x, q, 0)$.

Important Properties of FSAs

Given the FSAs A, A_1, and A_2 and the string w, the following properties are decidable:
- membership: $w \in (A)$?
- emptiness: $L(A) = \emptyset$?
- totality: $L(A) = \Sigma^*$?
- subset: $L(A_1) \subseteq L(A_2)$?
- equality: $L(A_1) = L(A_2)$?

The "derives" Relation

Definition (derives):
Given a deterministic FSA $M = (\Sigma, Q, i, F, d)$,
a state A derives state B: $(x, q, y) \vdash^* (x', q', y')$ iff there is a sequence $S_0 \vdash S_1 \ldots S_k$ such that $A = S_0$ and $B = S_k$.

Language Accepted by M

Definition (language accepted by M):
Given a deterministic FSA $M = (\Sigma, Q, i, F, d)$,
the language $L(M)$ accepted by M is the set of all strings accepted by M.

Encoding FSAs as Matrices

- basic idea: encode alphabet symbols that appear on transitions in a given FSA by a state transition matrix
- the transition matrix will have a 1 in a given cell in case its row and column match the from- and to-states of a transition for the alphabet symbol in the FSA; all other cells are filled with 0
- by matrix multiplication, one can determine the number of successful paths through an automaton
FSA Example

A non-deterministic automaton:

```
0 1
a b
a
b
a
b
a
0
1
2
```

What is its language?

FSA Matrix (2)

```
c = s0 s1 s2
  0 0 0
  0 0 1
  0 0 0
```

```
init = s0 s1 s2
  1 0 0
```

```
final = s0 s1
  0 0
```

Finite-State Transducers

Definition (finite-state transducer):

A finite-state transducer T is a tuple $(Q, \Sigma, \Gamma, i, F, d)$, where

- Q is a finite set of states
- Σ is a finite set called the input alphabet
- Γ is a finite set called the output alphabet
- $i \in Q$ is the initial state
- $F \subseteq Q$ is the set of final states, and
- d is the transition relation that maps $q \times \Sigma \times \Gamma$ to Q

Important Properties of FSTs

- It is decidable whether the relation $[T]$ of a transducer T is empty.
- It is decidable whether there exists a string y such that $x[T]y$ for a given string x.
- It is undecidable whether two transducers are equivalent.