Smoothing

L645
Dept. of Linguistics, Indiana University
Fall 2009
Smoothing – Definitions

- the N-gram matrix for any given training corpus is **sparse**
 - i.e., not all n-grams will be present
 - MLE produces bad estimates when the counts are small
- **smoothing** = re-evaluating zero and small probabilities, assigning very small probabilities for zero-N-grams
 - if non-occurring N-grams receive small probabilities, the probability mass needs to be redistributed!
 - smoothing also sometimes called **discounting**
Types Vs. Tokens

- **token**: single item
 - **type**: abstract class of items
- **example**: words in text
 - token: each word
 - type: each **different** word, i.e., wordform
- **sentence**: the man with the hat
 - tokens: the, man, with, the, hat # of tokens = 5
 - types: the, man, with, hat # of types = 4
Basic Techniques

An overview of what we’ll look at:

- Add-One Smoothing (& variations)
 - Laplace’s, Lidstone’s, & Jeffreys-Perks laws
- Deleted estimation: validate estimates from one part of corpus with another part
- Witten-Bell smoothing: use probabilities of seeing events for the first time
- Good-Turing estimation: use ratios between $n + 1$ and n-grams

Following Manning and Schütze, we’ll use n-gram language modeling as our example
Basics of n-grams

n-grams are used to model language, capturing some degree of grammatical properties

- Thus, we can state the probability of a word based on its history:

\[
P(w_n|w_1...w_{n-1})
\]

- n-gram probabilities are estimated as follows

\[
P(w_n|w_1...w_{n-1}) = \frac{P(w_1...w_n)}{P(w_1...w_{n-1})}
\]

- To avoid data sparsity issues, bigrams and trigrams are commonly used

- We can use maximum likelihood estimation (MLE) to obtain basic probabilities:

\[
P(w_n|w_1...w_{n-1}) = \frac{C(w_1...w_n)}{C(w_1...w_{n-1})}
\]

But MLE probabilities do nothing to handle unseen data.
Add-One Smoothing

Idea: pretend that non-existent bigrams are there once

- to make the model more just: assume that for each bigram we add one to the count
- ... turns out not to be a very good estimator
Add-One Smoothing

Laplace’s Law

- unigram probabilities:
 - \(N \) = number of tokens
 - \(C(x) \) = frequency of \(x \)
 - \(V \) = vocabulary size; number of types

- standard probability for word \(w_x \): \(P(w_x) = \frac{C(w_x)}{N} \)

- adjusted count: \(C^*(w_x) = (C(w_x) + 1) \frac{N}{N + V} \)
 - \(\frac{N}{N + V} \) is a normalizing factor, \(N + V \) is the new “size” of the text

- \(p^*(w_x) \): estimated probability
 - probability: \(p^*(w_x) = \frac{(C(w_x)+1) \frac{N}{N + V}}{N} = \frac{c(w_x)+1}{N + V} \)
Test Corpus: Windows Haiku Corpus

- Haiku: Japanese poem, each poem has only 17 syllables; 5 syllables in the first line, 7 in the second, 5 in the third
- corpus: 16 haikus, 253 tokens, 165 words
- Windows NT crash’d.
 I am the Blue Screen of Death.
 No-one hears your screams.
- Yesterday it work’d.
 Today it is not working.
 Windows is like that.
- Three things are certain:
 Death, taxes and lost data.
 Guess which has occurred.
Test Corpus: Add-One Smoothing

<table>
<thead>
<tr>
<th>word</th>
<th>freq.</th>
<th>unsmoothed: $\frac{C(w)}{N}$</th>
<th>add-one: $\frac{C(w)+1}{N+V}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>35</td>
<td>0.1383</td>
<td>0.0860</td>
</tr>
<tr>
<td>,</td>
<td>8</td>
<td>0.0316</td>
<td>0.0215</td>
</tr>
<tr>
<td>the</td>
<td>7</td>
<td>0.0277</td>
<td>0.0191</td>
</tr>
<tr>
<td>The</td>
<td>4</td>
<td>0.0158</td>
<td>0.0119</td>
</tr>
<tr>
<td>that</td>
<td>3</td>
<td>0.0119</td>
<td>0.0095</td>
</tr>
<tr>
<td>on</td>
<td>2</td>
<td>0.0079</td>
<td>0.0072</td>
</tr>
<tr>
<td>We</td>
<td>1</td>
<td>0.0040</td>
<td>0.0048</td>
</tr>
<tr>
<td>operator</td>
<td>0</td>
<td>0.0000</td>
<td>0.0024</td>
</tr>
</tbody>
</table>
Add-One Smoothing: Bigrams

- \(P(w_n | w_{n-1}) = \frac{C(w_{n-1}w_n)}{C(w_{n-1})} \)

- \(p^*(w_n | w_{n-1}) = \frac{C(w_{n-1}w_n)+1}{C(w_{n-1})+V} \)
Bigrams Example

<table>
<thead>
<tr>
<th>bigram</th>
<th>freq.</th>
<th>freq. w_{n-1}</th>
<th>unsmoothed: $\frac{C(w_{n-1}w_n)}{C(w_{n-1})}$</th>
<th>add-one: $\frac{C(w_{n-1}w_n)+1}{C(w_{n-1})+V}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>. END</td>
<td>35</td>
<td>35</td>
<td>1.0000</td>
<td>0.1800</td>
</tr>
<tr>
<td>START The</td>
<td>3</td>
<td>35</td>
<td>0.0857</td>
<td>0.0200</td>
</tr>
<tr>
<td>START You</td>
<td>2</td>
<td>35</td>
<td>0.0571</td>
<td>0.0150</td>
</tr>
<tr>
<td>is not</td>
<td>2</td>
<td>7</td>
<td>0.2857</td>
<td>0.0174</td>
</tr>
<tr>
<td>Your ire</td>
<td>1</td>
<td>2</td>
<td>0.5000</td>
<td>0.0120</td>
</tr>
<tr>
<td>You bring</td>
<td>1</td>
<td>3</td>
<td>0.3333</td>
<td>0.0119</td>
</tr>
<tr>
<td>not found</td>
<td>1</td>
<td>4</td>
<td>0.2500</td>
<td>0.0118</td>
</tr>
<tr>
<td>is the</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0.0058</td>
</tr>
<tr>
<td>This system</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0.0060</td>
</tr>
</tbody>
</table>
Lidstone’s & Jeffreys-Perks Laws

Because Laplace’s law overestimates non-zero events, variations were created:

- Lidstone’s law: instead of adding one, add some smaller value λ

\[
P(w_1...w_n) = \frac{C(w_1...w_n) + \lambda}{N + V\lambda}
\]

- Jeffreys-Perks law: set λ to be $\frac{1}{2}$ (the expectation of maximized MLE):

\[
P(w_1...w_n) = \frac{C(w_1...w_n) + \frac{1}{2}}{N + \frac{1}{2}}
\]

Problems: How do we guess λ? And still not good for low frequency n-grams . . .
Towards Deleted Estimation
Held-Out Estimation

To get an idea as to whether a smoothing technique is effective, we can use held-out estimation.

- Split the data into training data and held-out data
- Use the held-out data to see how good the training estimates are

Using bigrams as an example:

- Say that there are N_r bigrams with frequency r in the training data
- Count up how often all these bigrams together occur in the held-out data; call this T_r
- Average frequency in held-out data is thus $\frac{T_r}{N_r}$
Held-Out Estimation

Since N is the number of training instances, the probability of one of these n-grams is $\frac{T_r}{N_rN}$

This re-estimate can provide one of two different things:

- A reality check on the smoothing technique being used

- A better estimate to be used on the testing data
 - It is critical that the testing data be disjoint from both the held-out and the training data
Deleted Estimation

Held-Out Estimation keeps the held-out data separate from the training data

▷ But what if we split the training data in half?
 ▷ We could train on one half and validate on the other
 ▷ And then we could switch the training and validation portions

▷ With both of these estimates, we can average them to obtain even more reliable estimates

\[
p_{\text{del}}(w_1 \, w_2) = \frac{T_r^1 + T_r^2}{N(N_r^1 + N_r^2)}
\]
Deleted Estimation turns out to be quite good ... but not for low frequency n-grams

What’s wrong with low-frequency n-grams?

- Overestimates unseen objects (& underestimates one-time objects)
 - The n-grams that appear 0 times in one half of the training data are counted in the other
 - But as the size of the data increases, there are generally less unseen n-grams
 - In other words, the number of unseen objects is not linear, but deleted estimation assumes it is
 - Smaller training sets lead to more unseen events in the held-out data
Problems with Add-One Smoothing:

- add-one smoothing leads to sharp changes in probabilities
- too much probability mass goes to unseen events

Witten-Bell: think of unseen events as ones not having happened yet

- the probability of this event – when it happens – can be modeled by the probability of seeing it for the first time
First Time Probability

How do we estimate probability of an N-gram occurring for the first time?

- count number of times of seeing an N-gram for the first time in training corpus
- think of corpus as series of events: one event for each token and one event for each new type
- e.g. unigrams:
 corpus: a man with a hat
 event: a new man new with new a hat...
- number of events: \(N + T \)
Witten-Bell Probabilities

- **total** probability mass for unseen events:
 \[\sum_{x:C(w_x)=0} p^*(w_x) = \frac{T}{N+T} \]

- probability for **one** unseen unigram: \(p^*(w_x) = \frac{T}{Z(N+T)} \)
 - divide total prob. mass up for all unseen events
 - number of all unseen unigrams: \(Z = \sum_{x:C(w_x)=0} 1 \)

- discount total probability mass for unseen events from other events
 \(p^*(w_x) = \frac{C(w_x)}{N+T} \) for \(C(w_x) > 0 \)

- alternatively: **smoothed counts**:
 \[
 C^*(w_x) = \begin{cases}
 \frac{T}{Z} \frac{N}{N+T} & \text{if } C(w_x) = 0 \\
 C(w_x) \frac{N}{N+T} & \text{if } C(w_x) > 0
 \end{cases}
 \]
Witten-Bell Smoothed Bigrams

Type counts are conditioned on previous word: use probability of bigram **starting with previous word**

- \(T(w_x) \) = number of bigrams starting with \(w_x \)

Zero-count events:

- total prob. mass: \(\sum_{i: C(w_{i-1} w_i) = 0} p^*(w_i \mid w_{i-1}) = \frac{T(w_{i-1})}{N + T(w_{i-1})} \)
 - \(p^*(w_i \mid w_{i-1}) = \frac{T(w_{i-1})}{Z(w_{i-1})(N + T(w_{i-1}))} \) if \(C(w_{i-1} w_i) = 0 \)
 - \(Z(w_{i-1}) = \sum_{i: C(w_{i-1} w_i) = 0} 1 \)

Non-zero-count events:

- \(p^*(w_i \mid w_{i-1}) = \frac{C(w_{i-1} w_i)}{N + T(w_{i-1})} \) if \(C(w_{i-1} w_i) > 0 \)
 - \(N = C(w_{i-1}) \)
$T(w)$ And $Z(w)$ from Haikus

$Z(w) = \text{number of unseen bigrams starting with } w$

complete number of bigram starting with w: V

$Z(w) = V - T(w) = 165 - T(w)$

<table>
<thead>
<tr>
<th>word</th>
<th>$T(w)$</th>
<th>$Z(w)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>1</td>
<td>164</td>
</tr>
<tr>
<td>START</td>
<td>13</td>
<td>152</td>
</tr>
<tr>
<td>is</td>
<td>6</td>
<td>159</td>
</tr>
<tr>
<td>Your</td>
<td>2</td>
<td>163</td>
</tr>
<tr>
<td>You</td>
<td>2</td>
<td>163</td>
</tr>
<tr>
<td>not</td>
<td>4</td>
<td>161</td>
</tr>
<tr>
<td>This</td>
<td>2</td>
<td>163</td>
</tr>
</tbody>
</table>
Haiku Probabilities

<table>
<thead>
<tr>
<th>bigram</th>
<th>unsmoothed</th>
<th>add-one</th>
<th>Witten-Bell</th>
</tr>
</thead>
<tbody>
<tr>
<td>. END</td>
<td>1.0000</td>
<td>0.1800</td>
<td>0.9722</td>
</tr>
<tr>
<td>START The</td>
<td>0.0857</td>
<td>0.0200</td>
<td>0.0625</td>
</tr>
<tr>
<td>START You</td>
<td>0.0571</td>
<td>0.0150</td>
<td>0.0417</td>
</tr>
<tr>
<td>is not</td>
<td>0.2857</td>
<td>0.0174</td>
<td>0.1538</td>
</tr>
<tr>
<td>Your ire</td>
<td>0.5000</td>
<td>0.0120</td>
<td>0.2500</td>
</tr>
<tr>
<td>You bring</td>
<td>0.3333</td>
<td>0.0119</td>
<td>0.2000</td>
</tr>
<tr>
<td>not found</td>
<td>0.2500</td>
<td>0.0118</td>
<td>0.1250</td>
</tr>
<tr>
<td>is the</td>
<td>0</td>
<td>0.0058</td>
<td>0.0029</td>
</tr>
<tr>
<td>This system</td>
<td>0</td>
<td>0.0060</td>
<td>0.0031</td>
</tr>
</tbody>
</table>
Good-Turing-Smoothing

Idea: re-estimate probability mass assigned to N-grams with zero counts

- by looking at probability mass of all N-grams with count 1
- based on assumption of binomial distribution

Idea broken down:

- create classes N_c of N-grams which occur c times
- the size of class N_c is the frequency of frequency c

This works well for N-grams.
Good-Turing-Smoothing (2)

- smoothed count c: $c^* = (c + 1) \frac{N_{c+1}}{N_c}$
 - $N_c = \sum_{b:c(b)=c} 1$
- smoothed count for unseen events: $c^* = \frac{N_1}{N_0}$

Haiku counts:
\[
\begin{array}{ccc}
 c & N_c & c^* \\
 0 & 26980 & 0.0087 \\
 1 & 236 & 0.0593 \\
 2 & 7 & 0.4286 \\
 3 & 1 & 0 \\
 4 & 0 &
\end{array}
\]
Problem: for highest count c, $N_{c+1} = 0$!!!

- i.e. $c^* = (c + 1) \frac{N_{c+1}}{N_c} = (c + 1) \frac{0}{N_c} = 0$

Solution: discount only for small counts $c \leq k$ (e.g. $k = 5$)

- $c^* = c$ for $c > k$

New discounting:

$$c^* = \frac{(c+1) \frac{N_{c+1}}{N_c} - c \frac{(k+1)N_{k+1}}{N_1}}{1 - \frac{(k+1)N_{k+1}}{N_1}}$$
for $1 \leq c \leq k$
Haiku Bigrams

- $G-T = \frac{c^*_{(w_{n-1}, w_n)}}{C(w_{n-1})}$

- $k = 3$
Haiku Bigrams

- G-T = $\frac{c^*(w_{n-1}w_n)}{C(w_{n-1})}$
- $k = 3$

<table>
<thead>
<tr>
<th>bigram</th>
<th>count</th>
<th>orig.</th>
<th>add-1</th>
<th>W-B</th>
<th>G-T</th>
</tr>
</thead>
<tbody>
<tr>
<td>. END</td>
<td>35</td>
<td>1.0000</td>
<td>0.1800</td>
<td>0.9722</td>
<td>1.0000</td>
</tr>
<tr>
<td>START The</td>
<td>3</td>
<td>0.0857</td>
<td>0.0200</td>
<td>0.0625</td>
<td>0.0857</td>
</tr>
<tr>
<td>START You</td>
<td>2</td>
<td>0.0571</td>
<td>0.0150</td>
<td>0.0417</td>
<td>0.0122</td>
</tr>
<tr>
<td>is not</td>
<td>2</td>
<td>0.2857</td>
<td>0.0174</td>
<td>0.1538</td>
<td>0.1837</td>
</tr>
<tr>
<td>Your ire</td>
<td>1</td>
<td>0.5000</td>
<td>0.0120</td>
<td>0.2500</td>
<td>0.0297</td>
</tr>
<tr>
<td>You bring</td>
<td>1</td>
<td>0.3333</td>
<td>0.0119</td>
<td>0.2000</td>
<td>0.0198</td>
</tr>
<tr>
<td>not found</td>
<td>1</td>
<td>0.2500</td>
<td>0.0118</td>
<td>0.1250</td>
<td>0.0148</td>
</tr>
<tr>
<td>is the</td>
<td>0</td>
<td>0</td>
<td>0.0058</td>
<td>0.0029</td>
<td>0.0012</td>
</tr>
<tr>
<td>This system</td>
<td>0</td>
<td>0</td>
<td>0.0060</td>
<td>0.0031</td>
<td>0.0044</td>
</tr>
</tbody>
</table>
Backoff

Idea: go back to “smaller” N-grams

- i.e. do not only use trigram prob. but also bigrams and unigrams
- no trigram found, use bigram; if no bigram found, use unigram

... can be used instead of smoothing

- need to weight contribution of specific N-gram:

\[
P^*(w_i | w_{i-2}w_{i-1}) = \begin{cases}
P(w_i | w_{i-2}w_{i-1}) & \text{if } C(w_{i-2}w_{i-1}w_i) > 0 \\
\alpha_1 P(w_i | w_{i-1}) & \text{if } C(w_{i-2}w_{i-1}w_i) = 0 \text{ and } C(w_{i-1}w_i) > 0 \\
\alpha_2 P(w_i) & \text{otherwise} \end{cases}
\]
Simple linear interpolation involves mixing different pieces of information to derive a probability

- Called deleted interpolation with subset relations (e.g., bigrams and unigrams are subsets of trigrams)

\[(7) \quad \hat{P}(w_i|w_{i-2}w_{i-1}) = \lambda_1 P(w_i|w_{i-2}w_{i-1}) + \lambda_2 P(w_i|w_{i-1}) + \lambda_3 P(w_i)\]

- \(\sum \lambda_i = 1 \)
- \(0 \leq \lambda_i \leq 1 \)

Every trigram probability is a linear combination of the focus word’s trigram, bigram, and unigram.

- Use EM algorithm on held-out data to calculate \(\lambda \) values
Linear Interpolation
General linear interpolation

More generally, we can condition the word on its history and each λ can be based on the history, too

\[(8)\]

\[P(w|h) = \sum_i \lambda_i(h)P_i(w|h) \]

\[= \lambda_1(h)P_1(w|h) + \lambda_2(h)P_2(w|h) + \lambda_3(h)P_3(w|h) \]

- P_1 may focus on the trigram history, while P_2 uses the bigram, and so forth.
- So, instead of having one λ_1 for all trigrams, we have individualized it for each unique trigram
 - Useful, in that every trigram potentially behaves differently
 - But there’s a big sparse data problem
To overcome the sparse data problem, λ’s are calculated by putting them into equivalence bins

- One method (Chen and Goodman 1996) bases the bins on the number of different words which an $n-1$-gram has following it

$$\frac{C(w_1...w_{i-1})}{|w_i : C(w_1...w_i) > 0|}$$

- $w_i : C(w_1...w_i) > 0$ means: the set of w_i such that the trigram exists

- So, *great deal* occurs 178 times, with 36 different words after it: average count = 4.94

- *of that* occurs 178 times, with 115 different words after it: 1.55

- These histories will thus prompt different λ values