Cryptography

Jason Baldridge
UT Austin
Language and Computers

Many slides used from Chris Brew’s *Codes and Code Breaking* course at OSU, and much material taken from Simon Singh’s The Code Book: http://www.simonsingh.net/The_Code_Book.html
Decode these

gur urqtrubt va gur pntr pheyrq vagb n onyy
Decode these

gur urqtrubt va gur pntr pheyrq vagb n onyy

the hedgehog in the cage curled into a ball

Unix command to encode:
> echo "the hedgehog in the cage curled into a ball" | tr 'a-z' 'n-za-m'
Decode these

gur urqtrubt va gur pntr pheyrq vagb n onyy

the hedgehog in the cage curled into a ball

Unix command to encode:
> echo "the hedgehog in the cage curled into a ball" | tr 'a-z' 'n-za-m'

o homen alto esta dirigindo um carro grande na minha estrada
Decode these

gur urqtrubt va gur pntr pheyrq vagb n onyy
the hedgehog in the cage curled into a ball

Unix command to encode:
> echo "the hedgehog in the cage curled into a ball" | tr 'a-z' 'n-za-m'

o homem alto esta dirigindo um carro grande na minha estrada
the tall man is driving a big car on my street
Decode these

`gur urqtrubt va gur pntr pheyrq vagb n onyy`

the hedgehog in the cage curled into a ball

Unix command to encode:
> echo "the hedgehog in the cage curled into a ball" | tr 'a-z' 'n-za-m'

`o homen alto esta dirigindo um carro grande na minha estrada`

the tall man is driving a big car on my street
Decode these

`gur urqtrubt va gur pntr pheyrq vagb n onyy`

The hedgehog in the cage curled into a ball

Unix command to encode:
```
> echo "the hedgehog in the cage curled into a ball" | tr 'a-z' 'n-za-m'
```

`o homen alto esta dirigindo um carro grande na minha estrada`

The tall man is driving a big car on my street

The Voynich manuscript script - nobody knows!
Getting the message across

- If you want to get a message to someone, what can you do to prevent eavesdropping?

- This problem, the solutions to it, and the ways of breaking through the solutions have shaped history.

- They have also helped us crack forgotten writing systems such as Egyptian hieroglyphics and Linear B.

- The sophistication of codes and code-breaking has evolved greatly over the last several thousand years.

- We’ll start simple and get a glimpse of how things work today.
Alice, Bob, and Eve

- Alice wants to send a message to Bob, and Eve is trying to eavesdrop.

- If Alice doesn’t do anything, Eve will hear what Bob hears.

- However, if she encrypts the message and Bob knows how to decrypt it, Eve is out of luck.

Alice wants to send a message to Bob, and Eve is trying to eavesdrop.

If Alice doesn’t do anything, Eve will hear what Bob hears.

However, if she encrypts the message and Bob knows how to decrypt it, Eve is out of luck.

The branches of secret writing

Secret writing

Steganography (hidden)

Cryptography (scrambled)

Substitution

Code (replace words)

Cipher (replace characters)

Transposition (reorder)
Eavesdropping was avoiding early on by simply hiding the message.

- put the message in a false heel
- Histiaieus (494 BC): shave messenger’s head, write the message, let the hair grow and then the messenger could travel unhindered
- invisible ink

Steganography is derived from *steganos* “covered” and *graphein* “to write”

Provides some security, but if the message is detected, the contents are immediately known to the interceptors.
Encrypted messages can be seen by others, but their contents are hidden because the text itself has been transformed by some algorithm. The recipient must know how to reverse that algorithm.

Ways of encrypting messages:

- **transposition**: reordering the letters
- **substitution**: replace words or letters with other words, letters, or symbols
Transposition

- A simple way to scramble a message is **transposition**: reorder the symbols.
 - Example: READ THIS
 - random:
 - alternating:
 - insertion:

- **Scytales** were a way of doing alternating transposition easily. The message is encoded on a strip of leather on a cylinder, and then the decoder uses a cylinder of the same diameter to reveal the message.
Transposition

- A simple way to scramble a message is **transposition**: reorder the symbols.
 - Example: READ THIS
 - random:
 - EDRA HSTI
 - alternating:
 - insertion:
 - **Scytales** were a way of doing alternating transposition easily. The message is encoded on a strip of leather on a cylinder, and then the decoder uses a cylinder of the same diameter to reveal the message.
Transposition

- A simple way to scramble a message is **transposition**: reorder the symbols.
 - Example: READ THIS
 - random:

 EDRA HSTI
 - alternating: RATIEDHS
 - insertion:

 Scytales were a way of doing alternating transposition easily. The message is encoded on a strip of leather on a cylinder, and then the decoder uses a cylinder of the same diameter to reveal the message.
A simple way to scramble a message is transposition: reorder the symbols.

Example: READ THIS

- random: EDRA HSTI
- alternating: RATIEDHS
- insertion: ROBED THOBIS

Scytales were a way of doing alternating transposition easily. The message is encoded on a strip of leather on a cylinder, and then the decoder uses a cylinder of the same diameter to reveal the message.
Transposition

A simple way to scramble a message is **transposition**: reorder the symbols.

- Example: READ THIS
 - random: EDRA HSTI
 - alternating: R A T I
 E D H S
 \[\rightarrow\]
 RATIEDHS
 - insertion: ROBED THOBIS

Scytales were a way of doing alternating transposition easily. The message is encoded on a strip of leather on a cylinder, and then the decoder uses a cylinder of the same diameter to reveal the message.
Substitution

- With transposition, all the original characters of the underlying message are still available -- with enough time the message can be decoded easily.

- Substitution involves replacing the letters or words systematically:
 - **code**: replace words
 - **cipher**: replace letters

- The cipher of Mary Queen of Scots used both a cipher and coded words, and provides a dramatic example of the importance of using a strong encryption method.
The Cipher of Mary Queen of Scots

- A simple substitution cipher with codes for frequent words

From: http://www.simonsingh.com/The_Black_Chamber/maryqueen.html
Mary was imprisoned by Queen Elizabeth in 1567. After 18 years, she was contacted by Anthony Babington, who was plotting to free her and assassinate Queen Elizabeth.

Their correspondence was encrypted using the cipher shown previously, and it was delivered by Gilbert Gifford.

Unbeknownst to Mary and Babington, Gifford was a double agent, working for Sir Francis Walsingham, Principal Secretary to Queen Elizabeth and also her spymaster.
Weak encryption is worse than no encryption

- Walsingham was aware of recent advances in *cryptanalysis*, including *frequency analysis*. His cipher secretary, Thomas Phelippes, easily cracked the cipher and decoded the messages.

- These messages were the key evidence that she was a knowing participant in the plot. With that evidence, Walsingham had Mary arrested and put on trial. The judges recommended the death penalty and she was executed on February 8, 1587.

- Moral of the story: don’t use weak encryption!!!!
Weak encryption is worse than no encryption

- Walsingham was aware of recent advances in **cryptanalysis**, including **frequency analysis**. His cipher secretary, Thomas Phelippes, easily cracked the cipher and decode the messages.

- These messages were the key evidence that she was a knowing participant in the plot. With that evidence, Walsingham had Mary arrested and put on trial. The judges recommended the death penalty and she was executed on February 8, 1587.

- Moral of the story: don’t use weak encryption!!!!
Back to simple substitution ciphers

- **Caesar shift ciphers**: just shift the alphabet

 - e.g., shift-3:

 a b c d e w x y z
 D E F G H Z A B C

- **plain text**: the original message

- **cipher text**: the encoded message

read this
UHDG QKLV
Basic components of encryption

- **algorithm**: the encryption method that precisely defines how to produce cipher text
- **key**: details for the particular encryption
Basic components of encryption

- **algorithm**: the encryption method that precisely defines how to produce cipher text

- **key**: details for the particular encryption

Alice
Basic components of encryption

- **algorithm**: the encryption method that precisely defines how to produce cipher text
- **key**: details for the particular encryption
Basic components of encryption

- **algorithm**: the encryption method that precisely defines how to produce cipher text

- **key**: details for the particular encryption

readthis

 Alice

 Bob
Basic components of encryption

- **algorithm**: the encryption method that precisely defines how to produce cipher text
- **key**: details for the particular encryption

Algorithm: Caesar shift
Key: Shift-3

readthis

Alice

Bob
Basic components of encryption

- **algorithm**: the encryption method that precisely defines how to produce cipher text
- **key**: details for the particular encryption

Algorithm: Caesar shift
Key: Shift-3

Alice

Bob
Basic components of encryption

- **algorithm**: the encryption method that precisely defines how to produce cipher text
- **key**: details for the particular encryption

Algorithm: Caesar shift
Key: Shift-3

readthis

Alice

Bob

Eve

© 2010 Jason M Baldridge

LIN312: Language and Computers
Basic components of encryption

- **algorithm**: the encryption method that precisely defines how to produce cipher text

- **key**: details for the particular encryption

Algorithm: Caesar shift
Key: Shift-3

Alice \(\rightarrow\) UHDGWKLV \(\leftarrow\) Bob

Eve
Basic components of encryption

- **algorithm**: the encryption method that precisely defines how to produce cipher text

- **key**: details for the particular encryption

Algorithm: Caesar shift
Key: Shift-3

```
readthis  ➔  UHDGWKLKV
```

Alice ➔ Bob

```
UHDGWKLKV
```

Eve
Basic components of encryption

- **algorithm**: the encryption method that precisely defines how to produce cipher text
- **key**: details for the particular encryption

Algorithm: Caesar shift
Key: Shift-3

Alice

readthis → UHDGWKLV

Bob

Algorithm: Caesar shift
Key: Shift-3

Eve

UHDGWKLV

Algorithm: ?
Key: ?
Basic components of encryption

- **algorithm**: the encryption method that precisely defines how to produce cipher text
- **key**: details for the particular encryption

Algorithm: Caesar shift
Key: Shift-3

![Diagram](UHDGWKLV_1.png)

Alice
Bob
Eve

- Algorithm: Caesar shift
 Key: Shift-3
- Algorithm: Caesar shift
 Key: Shift-3

readthis → **UHDGWKLV** → **readthis**
UHDGWKLV
The most important aspect of encryption is for the secret to be the key, not the algorithm.

- “the enemy knows the system”
- the more keys the better

How many keys are there for Caesar shift?

- **Brute-force attack**: try all combinations (all possible keys)

So, this is pretty easy to do for Caesar shift. (Try the message on the course syllabus.)
Basic components of encryption

- The most important aspect of encryption is for the secret to be the key, not the algorithm.
 - “the enemy knows the system”
 - the more keys the better

- How many keys are there for Caesar shift? 25

- Brute-force attack: try all combinations (all possible keys)

- So, this is pretty easy to do for Caesar shift. (Try the message on the course syllabus.)
General substitution

- Caesar shift maintains the order of the original alphabet, thereby limiting the number of keys and leaving messages open to brute-force attacks.

- General substitution: any letter can substitute for any letter.

Plain alphabet: abcdefghijklmnopqrstuvwxyz
Cipher alphabet: JLPAsIQBCTZVRZYSKQGFXHUONVM

- This allows 400,000,000,000,000,000,000,000,000 keys. A brute force attack checking one per per second would take roughly a billion times the lifetime of the universe to decipher a message.

Plain text: et tu, brute?
Cipher text: WX XH, LGHXW?
Key phrases

- General substitution allows many more keys: but how can you easily remember the key in order to transmit it to the receiver?

- By using **keywords** or **key phrases**, it becomes easy to remember the key while still keeping a large number of possible keys. How to do it:

 - Choose a phrase, like JULIUS CAESAR

 - Remove spaces and duplicate letters: JULISCAER

 - Use this as the beginning of the cipher alphabet, and use the rest of the letters in order, starting where the key phrase ends.
Key phrases

With key phrase JULIUS CAESAR:

Plain alphabet: abcdefghijklmnopqrstuvwxyz
Cipher alphabet: JULISCAERTVWXYZBDFGHKMNOPQ

Advantages:

- key phrase is easily committed to memory: no need to write it down on paper that could be intercepted
- not as many keys as general case, but still too many for brute force

What is the major problem with this encryption method?
Many following slides from Chris Brew (OSU)
Decode this…

ZM VOWVI HRHGVI XZNV GL ERHRG SVI BLFMTVI HRHGVI RM GSV XLFMGIB. GSV VOWVI DZH NZIIRVW GL Z GIZWVHNZM RM GLDM, GSV BLFMTVI GL Z KVZHZMG RM GSV EROOZTV. ZH GSV HRHGVIH HZG LEVI GSVRI GVZ GZOPRMT, GSV VOWVI YVTZM GL YLZHG LU GSV ZWEZMGZTVH LU GLDM ORUV: HZBRMT SLD XLNULIGZYOB GSVB OREVW GSVIV, SLD DVOO GSVB WIVHHWV, DSZG URMV XOLGSVH SVI XSROWIVM DLIV, DSZG TLLW GSRMTH GSVB ZGV ZMW WIZMP, ZMW SLD HSV DVMG GL GSV GSVZGIV, KILNVMZWH, ZMW VMGVIGZRMNVMGH. ZM VOWVI HRHGVI XZNV GL ERHRG SVI BLFMTVI HRHGVI RM GSV XLFMGIB. GSV VOWVI DZH NZIIRVW GL Z GIZWVHNZM RM GLDM, GSV BLFMTVI GL Z KVZHZMG RM GSV EROOZTV. ZH GSV HRHGVIH HZG LEVI GSVRI GVZ GZOPRMT, GSV VOWVI YVTZM GL YLZHG LU GSV ZWEZMGZTVH LU GLDM ORUV: HZBRMT SLD XLNULIGZYOB GSVB OREVW GSVIV, SLD DVOO GSVB WIVHHWV, DSZG URMV XOLGSVH SVI XSROWIVM DLIV, DSZG TLLW GSRMTH GSVB ZGV ZMW WIZMP, ZMW SLD HSV DVMG GL GSV GSVZGIV, KILNVMZWH, ZMW VMGVIGZRMNVMGH.
Intuitively...
Intuitively...

- What clues do we have?
Intuitively...

- What clues do we have?
- How shall we work with them?
Intuitively...

- What clues do we have?
- How shall we work with them?
- What are we assuming?
A systematic approach

- Make a table of the characters used
'B', 'D', 'E', 'F', 'G', 'H',
'I', 'K', 'L', 'M', 'N', 'O',
'P', 'R', 'S', 'T', 'U', 'V',
'W', 'X', 'Y', 'Z'
Character set

'B', 'D', 'E', 'F', 'G', 'H',
'I', 'K', 'L', 'M', 'N', 'O',
'P', 'R', 'S', 'T', 'U', 'V',
'W', 'X', 'Y', 'Z'
Character set

- No ‘A’, ’C’, ’J’, ’Q’
- Why not?

'B', 'D', 'E', 'F', 'G', 'H',
'I', 'K', 'L', 'M', 'N', 'O',
'P', 'R', 'S', 'T', 'U', 'V',
'W', 'X', 'Y', 'Z'
What to expect.

- Make the same table for known English text
- Same number of characters from lead sport article in Sunday’s Columbus Dispatch

In a city synonymous with hope against all odds, the Ohio State men’s basketball team stared down another sticky situation in the Alamodome to defeat Memphis and advance to the NCAA Final Four. Madness is on the march -- to Atlanta.

“Three years ago, we had a vision for this program. It just became reality,” OSU coach Thad Matta said as chants of O-H-I-O filled the arena after the Buckeyes’ 92-76 win against Memphis. OSU now heads to Saturday’s national semifinals.

The reality didn’t come easy.

The No. 1 Buckeyes seldom take the simple route to success, as proved in the past two games when they needed late and big comebacks against Xavier and Tennessee.

Yesterday’s win against the second-seeded Tigers in the South Regional final was no different, despite the 16-point margin of victory.

Ohio State (34-3) needed its four freshmen to play like seniors, and needed one of those kids, 7-foot center Greg Oden, to help wipe away a five-point deficit with 12:39 to play.
'A', 'B', 'C', 'D', 'E', 'F',
'G', 'H', 'I', 'J', 'K', 'L', 'M',
'N', 'O', 'P', 'R', 'S', 'T',
'U', 'V', 'W', 'X', 'Y'
Known English

- No 'Q', 'Z'

Known English

- No 'Q', 'Z'
- Why not?

'A', 'B', 'C', 'D', 'E', 'F',
'G', 'H', 'I', 'J', 'K', 'L', 'M',
'N', 'O', 'P', 'R', 'S', 'T',
'U', 'V', 'W', 'X', 'Y'
Known English

- No 'Q', 'Z'
- Why not?
- Would this be same for other texts?

A systematic approach

- Make a table of the characters used
- Keep track of frequencies
- We’ll return to this in a second…
Intuitive approach

- How did you do it?
Systematizing intuition

- Word spotting
Systematizing intuition

- Word spotting
- Start with short, common words
ZM VOWVI HRHGVİ XZNV GL ERHRG SVİ BLFMTVI
HRHGVİ RM GSV XLFGMİB. GSV VOWVI DZH NZİIRVW
THE?
GLZ GİZWVHNZM RM GLDM, GSV BLFMTVI GL Z
KVZHZMG RM GSV EROOZTV. ZH GSV HRHGVİH HZG
LEVI GSVRI GVZ GZOPRMT, GSV ...
Word spotting…

ZM VOWVI HRHGVI XZNV GL ERHRG SVI BLFMTVI
.. E..E. ...TE. ...E T.T .E.E.
HRHGVI RM GSV XLFMGIB. **GSV** VOWVI DZH NZIIRVW
....E. .. THET..+ THE E..E.E.
GL Z GIZWVHNZM RM GLDM, **GSV** BLFMTVI GL Z
KVZHZMG RM **GSV** EROOZTV. ZH **GSV** HRHGVIH HZG
.E....T .. THET+ .. THE ...TE.. ..T
LEVI GSVRI GVZ GZOPRMT, **GSV** ...
..E. THE.. TE. T........, THE ...
Word spotting…

ZM VOWVI HRHGVI XZNV GL ERHRG SVI BLFMTVI
A. E..E. ...TE. ...E TOT .E. .O...E.
HRHGVI RM GSV XLFMGIB. GSV VOWVI DZH NZIIRVW
GL Z GIZWVHNNZM RM GLDM, GSV BLFMTVI GL Z
TO A T.A...... .. TO..., THEE. TO A
KVZHZMG RM GSV EROOZTV. ZH GSV HRHGVIH HZG
.E.....T .. THET+ A. THE ...TE.. ..T
LEVI GSVRI GVZ GZOPRMT, GSV ...
..E. THE.. TEA TA......, THE ...

Friday, March 26, 2010
How are we doing?

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>O</td>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>t</td>
<td>o</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>e</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cut to the chase?

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>Y</td>
<td>X</td>
<td>W</td>
<td>V</td>
<td>U</td>
<td>T</td>
<td>S</td>
<td>R</td>
<td>Q</td>
<td>P</td>
<td>O</td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>O</td>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>U</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>M</td>
<td>L</td>
<td>K</td>
<td>J</td>
<td>I</td>
<td>H</td>
<td>G</td>
<td>F</td>
<td>E</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>

© 2010 Jason M Baldridge
Does it work…

AN ELDER SISTER CAME TO VISIT HER YOUNGER SISTER. THE O..T..+ THE E..E. .A. .A...E. GL Z GIZWVHNZM RM GLDM, GSV BLFMTVI GL Z TO A T.A...... .. TO.., THEE. TO A KVZHZMG RM GSV EROOZTV. ZH GSV HRHGVIH HZG .E....T .. THET+ A. THE ...TE.. ..T LEVI GSVRI GVZ GZOPRMT, GSVE. THE.. TEA TA......, THE ...
Word spotting
Word spotting

- Focused on short common words
Word spotting

- Focused on short common words
- Spotted a few words
Word spotting

- Focused on short common words
- Spotted a few words
- Guessed it was a reversed alphabet.
Word spotting

- Focused on short common words
- Spotted a few words
- Guessed it was a reversed alphabet.
- Checked it.
Word spotting

- Focused on short common words
- Spotted a few words
- Guessed it was a reversed alphabet.
- Checked it.
- Why do we know this is the answer?
Why we think it is right.

- It looks like English
- The encoding we found makes sense
Character set

'B', 'D', 'E', 'F', 'G', 'H',
'I', 'K', 'L', 'M', 'N', 'O',
'P', 'R', 'S', 'T', 'U', 'V',
'W', 'X', 'Y', 'Z'

'B', 'D', 'E', 'F', 'G', 'H',
'I', 'K', 'L', 'M', 'N', 'O',
'P', 'R', 'S', 'T', 'U', 'V',
'W', 'X', 'Y', 'Z'
Character set

- Why not?

Character set

- Why not?
Character set

- Why not?
 - Makes sense

Exercise

- Not the reversed alphabet, but similar.
- Use word spotting as just shown.
- See the last page of these slides for the answer.

"E QYSBJ ZYT KFMZGI AO QMO YH BEHI HYV OYSVU," UMEJ UFI. "QI AMO BERI VYSGFBO, LST MT BIMUT QI MVI HVII HVYA MZPEITO. OYS BERI EZ LITTIV UTOBI TFMZ QI JY, LST TFYSGF OYS YHTIZ IMVZ AYVI TFMZ OYS ZIIJ, OYS MVI RIVO BECIBO TY BYUI MBB OYS FMRI. OYS CZYQ TFI XVYRIVL, 'BYUU MZJ GMEZ MVI LVYTFIVU TQMEZ.' ET YHTIZ FMXXIZU TFMT XIYXBI QFY MVI QIMBTFO YZI JMO MVI LIGGEZG TFIEV LVIMJ TFI ZIPT. YSV QMO EU UMHVIV. TFYSGF M XIMUMZT'U BEHI EU ZYT M HMT YZI, ET EU M BYZG YZI. QI UFMBB ZIRIV GVYQ VEKF, LST QI UFMBB MBQMOU FMRI IZYSGF TY IMT."
Character frequency distributions

- Not just present/absent but count
- We know which letters will probably be common
- By counting the frequency of each character in the cipher text, we can compare the relative frequency of cipher text characters to the frequency of plain text characters (using existing unencrypted text).
- A table of frequencies for all characters is a frequency distribution.
Frequencies

<table>
<thead>
<tr>
<th>Letter</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>16</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>22</td>
</tr>
<tr>
<td>E</td>
<td>10</td>
</tr>
<tr>
<td>F</td>
<td>6</td>
</tr>
<tr>
<td>G</td>
<td>88</td>
</tr>
<tr>
<td>H</td>
<td>46</td>
</tr>
<tr>
<td>I</td>
<td>50</td>
</tr>
<tr>
<td>J</td>
<td>0</td>
</tr>
<tr>
<td>K</td>
<td>4</td>
</tr>
<tr>
<td>L</td>
<td>48</td>
</tr>
<tr>
<td>M</td>
<td>54</td>
</tr>
<tr>
<td>N</td>
<td>12</td>
</tr>
<tr>
<td>O</td>
<td>26</td>
</tr>
<tr>
<td>P</td>
<td>4</td>
</tr>
<tr>
<td>Q</td>
<td>0</td>
</tr>
<tr>
<td>R</td>
<td>50</td>
</tr>
<tr>
<td>S</td>
<td>46</td>
</tr>
<tr>
<td>T</td>
<td>88</td>
</tr>
<tr>
<td>U</td>
<td>6</td>
</tr>
<tr>
<td>V</td>
<td>10</td>
</tr>
<tr>
<td>W</td>
<td>22</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td>Y</td>
<td>16</td>
</tr>
<tr>
<td>Z</td>
<td>0</td>
</tr>
</tbody>
</table>

© 2010 Jason M Baldridge

Friday, March 26, 2010
Histogram of frequencies

Plain

Reversed
Frequencies

- The frequency pattern for the reversed alphabet exactly mirrors that of the plain text.
- A Caesar shift will just show a shift in such frequency.
- What does a cipher letter “N” encode given the cipher and plain text frequency distributions on the right?
Frequencies

- The frequency pattern for the reversed alphabet exactly mirrors that of the plain text.
- A Caesar shift will just show a shift in such frequency.
- What does a cipher letter “N” encode given the cipher and plain text frequency distributions on the right?
Relative frequency of English characters (from wikipedia)

Alphabetic order
Relative frequency of English characters (from wikipedia)

Ordered by Frequency

Alphabetic order
Big assumption

- Each time a letter appears in the plaintext it will map to the *same* letter in the ciphertext.

- Technically, this makes the ciphers we have considered so far **monoalphabetic**.

- The problem with a monoalphabetic cipher is that it is easy to decode with word spotting and frequency analysis because each character has only one way to be encoded.

- Let’s have a look at **polyalphabetic** ciphers, which provide an extra level of protection.
The Vigenere square, published in 1586 by Blaise de Vigenere, allows all 25 Caesar shift keys to be used for the same encryption.

The important thing is that each plain text character will be encoded in multiple ways.

The encoding is determined by the Vignere square plus a keyphrase, such as KING or WHITE.
• The square defines mappings from plain text characters (column headings) to cipher text (in the square) using a key phrase letter (row headings).

• For example, if the key phrase is WHITE, the highlighted rows will be used for encryption.

• To encode a ‘d’ with a W, we look down the ‘d’ column to the W row.
The Vigenere Square

- The square defines mappings from plain text characters (column headings) to cipher text (in the square) using a key phrase letter (row headings).

- For example, if the key phrase is WHITE, the highlighted rows will be used for encryption.

- To encode a ‘d’ with a W, we look down the ‘d’ column to the W row.
The Vigenere Square

- The square defines mappings from plain text characters (column headings) to cipher text (in the square) using a key phrase letter (row headings).

- For example, if the key phrase is WHITE, the highlighted rows will be used for encryption.

- To encode a ‘d’ with a W, we look down the ‘d’ column to the W row.
The Vigenere Square

- The square defines mappings from plain text characters (column headings) to cipher text (in the square) using a key phrase letter (row headings).

- For example, if the key phrase is WHITE, the highlighted rows will be used for encryption.

- To encode a ‘d’ with a W, we look down the ‘d’ column to the W row.
The Vigenere Square

- The square defines mappings from plain text characters (column headings) to cipher text (in the square) using a key phrase letter (row headings).

- For example, if the key phrase is WHITE, the highlighted rows will be used for encryption.

- To encode a ‘d’ with a W, we look down the ‘d’ column to the W row.
The square defines mappings from plain text characters (column headings) to cipher text (in the square) using a key phrase letter (row headings).

For example, if the key phrase is WHITE, the highlighted rows will be used for encryption.

To encode a ‘d’ with a W, we look down the ‘d’ column to the W row.
The Vigenere Square

- The square defines mappings from plain text characters (column headings) to cipher text (in the square) using a key phrase letter (row headings).

- For example, if the key phrase is WHITE, the highlighted rows will be used for encryption.

- To encode a ‘d’ with a W, we look down the ‘d’ column to the W row.
The Vigenere Square

- The square defines mappings from plain text characters (column headings) to cipher text (in the square) using a key phrase letter (row headings).

- For example, if the key phrase is WHITE, the highlighted rows will be used for encryption.

- To encode a ‘d’ with a W, we look down the ‘d’ column to the W row.
The Vigenere Square

- The square defines mappings from plain text characters (column headings) to cipher text (in the square) using a key phrase letter (row headings).

- For example, if the key phrase is WHITE, the highlighted rows will be used for encryption.

- To encode a ‘d’ with a W, we look down the ‘d’ column to the W row.
Vigenere example

- To encode with Vigenere, the key phrase is repeated above the plain text, and the corresponding row of the square for each key phrase character is used to encode each plain text character.

- To encode the message “divert troops to east” with the keyword WHITE:

 Key phrase:
 Plain text: diverttroopstoeast
 Cipher:

- Note that the same letter is encoded in many different ways. For example, “t” becomes P, A and, B in the above message.
Vigenere example

To encode with Vigenere, the key phrase is repeated above the plain text, and the corresponding row of the square for each key phrase character is used to encode each plain text character.

To encode the message “divert troops to east” with the keyword WHITE:

- Key phrase: WHITEWHITEWHITEWHI
- Plain text: diverttroopstoeast
- Cipher:

Note that the same letter is encoded in many different ways. For example, “t” becomes P, A and, B in the above message.
Vigenere example

To encode with Vigenere, the key phrase is repeated above the plain text, and the corresponding row of the square for each key phrase character is used to encode each plain text character.

To encode the message “divert troops to east” with the keyword WHITE:

Key phrase: WHITEWHITEWHITEWHI
Plain text: diverttroopstoeast
Cipher: Z

Note that the same letter is encoded in many different ways. For example, “t” becomes P, A and, B in the above message.
Vigenere example

To encode with Vigenere, the key phrase is repeated above the plain text, and the corresponding row of the square for each key phrase character is used to encode each plain text character.

To encode the message “divert troops to east” with the keyword WHITE:

Key phrase: WHITEWHITEWHITEWHI
Plain text: diverttroopstoeast
Cipher: ZP

Note that the same letter is encoded in many different ways. For example, “t” becomes P, A and, B in the above message.
To encode with Vigenere, the key phrase is repeated above the plain text, and the corresponding row of the square for each key phrase character is used to encode each plain text character.

To encode the message “divert troops to east” with the keyword WHITE:

Key phrase: WHITEWHITEWHITEWHI
Plain text: diverttroopstoeast
Cipher: ZPDXVPAZHSLZBHIWZB

Note that the same letter is encoded in many different ways. For example, “t” becomes P, A and, B in the above message.
Vigenere’s weakness

Because it was not susceptible to word spotting and frequency analysis, the Vigenere method became known as *Le Chiffre Inde chiff rable*, “The Undecipherable Cipher”. However, the use of a repeating key phrase was its weakness. Charles Babbage discovered how to crack such ciphers in the mid 1800’s.

Basic idea:

- for a key phrase w/ N letters, each letter can only be encoded N ways.
- look for common repeating sequences to find the length of the key phrase
- use frequency analysis for everything Nth character

Example:

Key phrase: KINGKINGKINGKINGKINGKINGKINGKING
Plain text: thesunandthemaninthemoon
Cipher: DPRYEVNTNBKWIAXOXBKWWBT
Vigenere’s weakness

- Because it was not susceptible to word spotting and frequency analysis, the Vigenere method became known as *Le Chiffre Indechiffrable*, “The Undecipherable Cipher”. However, the use of a repeating key phrase was its weakness. Charles Babbage discovered how to crack such ciphers in the mid 1800’s.

- Basic idea:
 - for a key phrase w/ N letters, each letter can only be encoded N ways.
 - look for common repeating sequences to find the length of the key phrase
 - use frequency analysis for everything Nth character

- Example:
 - **Key phrase:** KINGKINGKINGKINGKINGKINGKINGKING
 - **Plain text:** thesunandthemaninthemoon
 - **Cipher:** DPRYEVNTNBUKWIAOXBUKWWBT
Vigenere’s weakness

Because it was not susceptible to word spotting and frequency analysis, the Vigenere method became known as *Le Chiffre Indechiffrable*, “The Undecipherable Cipher”. However, the use of a repeating key phrase was its weakness. Charles Babbage discovered how to crack such ciphers in the mid 1800’s.

Basic idea:

- for a key phrase with N letters, each letter can only be encoded N ways.
- look for common repeating sequences to find the length of the key phrase
- use frequency analysis for everything Nth character

Example:

- **Key phrase:** KINGKINGKINGKINGKINGKINGKINGKING
- **Plain text:** thesunandthemanintheboom
- **Cipher:** DPRYEVKTNBUKWOXBUKWWBT

8 chrs = 2 x length(“KING”)
What about a non-repeating key phrase?

- One could use a poem or a book, or the names of all the presidents as a key phrase. This would be much more impervious to this style of decipherment.

- But, we can play a variant of the word spotting game even in this case! Assume that some common word, like “the” is in various parts of the plain text, and see if an interesting key phrase word would have produced the cipher text:

 Cipher: VHRMHEUZNFQDEZRWXFIDK
What about a non-repeating key phrase?

- One could use a poem or a book, or the names of all the presidents as a key phrase. This would be much more impervious to this style of decipherment.

- But, we can play a variant of the word spotting game even in this case! Assume that some common word, like “the” is in various parts of the plain text, and see if an interesting key phrase word would have produced the cipher text:

 Key phrase: ???? ?????????????????????????
 Plain text: ???? ?????????????????????????
 Cipher: VHRMHEUZNFQDEZRWXFIDK
What about a non-repeating key phrase?

- One could use a poem or a book, or the names of all the presidents as a key phrase. This would be much more impervious to this style of decipherment.

- But, we can play a variant of the word spotting game even in this case! Assume that some common word, like “the” is in various parts of the plain text, and see if an interesting key phrase word would have produced the cipher text:

 Key phrase: ?????????????????????????????????
 Plain text: the???the?????the????
 Cipher: VHRMHEUZNFQDEZRWXFIDK
What about a non-repeating key phrase?

- One could use a poem or a book, or the names of all the presidents as a key phrase. This would be much more impervious to this style of decipherment.

- But, we can play a variant of the word spotting game even in this case! Assume that some common word, like “the” is in various parts of the plain text, and see if an interesting key phrase word would have produced the cipher text:

 Key phrase: CAN???BSJ?????YPT????
 Plain text: the???the?????the????
 Cipher: VHRMHEUZNFQDEZRWXFIDK
What about a non-repeating key phrase?

- One could use a poem or a book, or the names of all the presidents as a key phrase. This would be much more impervious to this style of decipherment.

- But, we can play a variant of the word spotting game even in this case! Assume that some common word, like “the” is in various parts of the plain text, and see if an interesting key phrase word would have produced the cipher text:

 Key phrase: CAN???BSJ??????YPT????
 Plain text: the???the?????the????
 Cipher: VHRMHEUZNFQDEZRWXFIDK

 CAN, CANteen, CANada, CANny
What about a non-repeating key phrase?

- One could use a poem or a book, or the names of all the presidents as a key phrase. This would be much more impervious to this style of decipherment.

- But, we can play a variant of the word spotting game even in this case! Assume that some common word, like “the” is in various parts of the plain text, and see if an interesting key phrase word would have produced the cipher text:

 Key phrase: CAN???BSJ??????YPT????
 Plain text: the???the??????the????
 Cipher: VHRMHEUZNFQDEZRWXFIDK

CAN, CANteen, CANada, CANny

?? ... Doesn’t look like English...
What about a non-repeating key phrase?

- One could use a poem or a book, or the names of all the presidents as a key phrase. This would be much more impervious to this style of decipherment.

- But, we can play a variant of the word spotting game even in this case! Assume that some common word, like “the” is in various parts of the plain text, and see if an interesting key phrase word would have produced the cipher text:

 Key phrase: CAN???BSJ??????YPT????
 Plain text: the???the?????the????
 Cipher: VHRMHEUZNFQDEZRWXFIDK

 CAN, CANteen, CANada, CANny

 ??? ... Doesn’t look like English...

 apocalYPTic, crYPT, egYPT
What about a non-repeating key phrase?

- One could use a poem or a book, or the names of all the presidents as a key phrase. This would be much more impervious to this style of decipherment.

- But, we can play a variant of the word spotting game even in this case! Assume that some common word, like “the” is in various parts of the plain text, and see if an interesting key phrase word would have produced the cipher text:

 Key phrase: CAN???BSJ?????YPT????
 Plain text: the???the?????the????
 Cipher: VHRMHEUZNFQDEZRWXFIDK
What about a non-repeating key phrase?

- One could use a poem or a book, or the names of all the presidents as a key phrase. This would be much more impervious to this style of decipherment.

- But, we can play a variant of the word spotting game even in this case! Assume that some common word, like “the” is in various parts of the plain text, and see if an interesting key phrase word would have produced the cipher text:

 Key phrase: CAN??????APOCALYPTIC??
 Plain text: the??????nqcbeothexg??
 Cipher: VHRMHEUZNQDEZRWXFIDK
What about a non-repeating key phrase?

- One could use a poem or a book, or the names of all the presidents as a key phrase. This would be much more impervious to this style of decipherment.

- But, we can play a variant of the word spotting game even in this case! Assume that some common word, like "the" is in various parts of the plain text, and see if an interesting key phrase word would have produced the cipher text:

 Key phrase: CAN?????????EYPT????
 Plain text: the????????atatthe????
 Cipher: VHRMHEUZNFQDEZRWXFIDK
What about a non-repeating key phrase?

- One could use a poem or a book, or the names of all the presidents as a key phrase. This would be much more impervious to this style of decipherment.

- But, we can play a variant of the word spotting game even in this case! Assume that some common word, like “the” is in various parts of the plain text, and see if an interesting key phrase word would have produced the cipher text:

 Key phrase: CANADA???????EGYPT????
 Plain text: themee???????atthe????
 Cipher: VHRMHEUZNFQDEZRWXFIDK
What about a non-repeating key phrase?

- One could use a poem or a book, or the names of all the presidents as a key phrase. This would be much more impervious to this style of decipherment.

- But, we can play a variant of the word spotting game even in this case! Assume that some common word, like “the” is in various parts of the plain text, and see if an interesting key phrase word would have produced the cipher text:

 Key phrase: CANADA????????EGYPT????
 Plain text: themeeeting??atthe????
 Cipher: VHRMHEUZNFQDEZRWXFIDK
What about a non-repeating key phrase?

- One could use a poem or a book, or the names of all the presidents as a key phrase. This would be much more impervious to this style of decipherment.

- But, we can play a variant of the word spotting game even in this case! Assume that some common word, like “the” is in various parts of the plain text, and see if an interesting key phrase word would have produced the cipher text:

 Key phrase: CANADABRAZ??EGYPT????
 Plain text: themeeting??atthe????
 Cipher: VHRMHEUZNFQDEZRWXFIDK
What about a non-repeating key phrase?

- One could use a poem or a book, or the names of all the presidents as a key phrase. This would be much more impervious to this style of decipherment.

- But, we can play a variant of the word spotting game even in this case! Assume that some common word, like “the” is in various parts of the plain text, and see if an interesting key phrase word would have produced the cipher text:

 - **Key phrase:** CANADABRAZILEGYPT?????
 - **Plain text:** themeeetingisatthe?????
 - **Cipher:** VHRMHEUZNFQDEZRWXFIDK
What about a non-repeating key phrase?

- One could use a poem or a book, or the names of all the presidents as a key phrase. This would be much more impervious to this style of decipherment.

- But, we can play a variant of the word spotting game even in this case! Assume that some common word, like “the” is in various parts of the plain text, and see if an interesting key phrase word would have produced the cipher text:

 Key phrase: CANADABRAZILEGYPTCUBA
 Plain text: themeeetingisatthedock
 Cipher: VHRMHEUZNFQDEZRWXFIDK
Mechanization of polyalphabetic ciphers
Mechanization of polyalphabetic ciphers

Confederate Cipher Disk

Enigma Machine
Substitution in the digital age

- To a computer, letters are just binary numbers (e.g., ASCII)
- Encryption then becomes a question of manipulating numbers.
 - “HELLO” = 1001000 1000101 1001100 1001100 1001111
 (Decimal: 18,391,344,324)
 - “DAVID” = 1000100 1000001 1010110 1001001 1000100
 (Decimal: 19,473,311,311)
 - Operation: bitwise addition (0+0 = 0, 0+1=1, 1+0=1, 1+1=0)
Substitution in the digital age

- To a computer, letters are just binary numbers (e.g., ASCII)
- Encryption then becomes a question of manipulating numbers.
 - “HELLO” = 1001000 1000101 1001100 1001100 1001111
 (Decimal: 18,391,344,324)
 - “DAVID” = 1000100 1000001 1010110 1001001 1000100
 (Decimal: 19,473,311,311)
 - Operation: bitwise addition (0+0 = 0, 0+1=1, 1+0=1, 1+1=0)

Key phrase: 10001001000001101011010010011000100
Plain text: 10010001000101100110011000111
Cipher text: 00011000000100001101000001010001011
To a computer, letters are just binary numbers (e.g., ASCII)

Encryption then becomes a question of manipulating numbers.

"HELLO" = 1001000 1000101 1001100 1001100 1001111
(Decimal: 18,391,344,324)

"DAVID" = 1000100 1000001 1010110 1001001 1000100
(Decimal: 19,473,311,311)

Operation: bitwise addition (0+0 = 0, 0+1=1, 1+0=1, 1+1=0)

Key phrase: 10001001000001101011010010011000100
Plain text: 10010001000101100110010011001001111
Cipher text: 00011000000100001101000001010001011

3,230,040,715
(No simple character string)
Exploits

- Encrypted messages have actual content underlying them, so educated guesses about the keys and the content could often be exploited:
 - frequency
 - repetition
 - many words are more common and will be repeated
 - many messages will start with the same pattern, e.g., a date or location
 - meaning: both keys and message have semantic patterns
During WWII, the American military used Navajos as radio operators who could speak in a code (i.e., the Navajo language) to transmit messages.

A message in English would be given to a Navajo radio operator, who would speak a Navajo translation into the radio. Another Navajo radio operator would hear it on the other side, and translate it back into English easily.

Code talkers had been used in WWI, so Hitler had sent anthropologists to study native American languages before the outbreak of WWII, but could not cover all the languages and dialects that existed: the Navajo was one of the tribes that had not been studied.
The Navajo code talkers

- Code talkers were amazingly effective for several reasons.
 - the Japanese and German militaries had no expertise in Navajo. It belongs to the Na-Dene family of languages, which has no link to Asian or European languages
 - in trials, American cryptanalysts couldn’t even transcribe it, much less crack it, calling Navajo “a weird succession of guttural, nasal, tongue-twisting sounds”
 - encoding and decoding was extremely fast, so Navajo soldiers were extremely useful in battle groups that couldn’t wait for decipherment with more complex techniques for hiding English messages.
The Navajo code talkers

Code talkers were amazingly effective for several reasons.

- the Japanese and German militaries had no expertise in Navajo. It belongs to the Na-Dene family of languages, which has no link to Asian or European languages.

- in trials, American cryptanalysts couldn’t even transcribe it, much less crack it, calling Navajo “a weird succession of guttural, nasal, tongue-twisting sounds”

- encoding and decoding was extremely fast, so Navajo soldiers were extremely useful in battle groups that couldn’t wait for decipherment with more complex techniques for hiding English messages.
Deciphering lost languages and ancient scripts

- Many writing systems have been developed over the ages, and some were forgotten.
 - Ancient Egyptian hieroglyphs
 - Linear B

- And mysterious manuscripts have come to light, such as the Voynich manuscript.
 - unknown script, unknown language
 - fake or real?
Egyptian hieroglyphs

- It was originally thought that the hieroglyphic writing system was completely logographic: each character represents a concept.

- In 1652, the Jesuit scholar Athanasius Kircher published a dictionary of hieroglyphs based on the logographic assumption. This assumption persisted for another century and a half.

- In 1799, the Rosetta stone was discovered: it contained a single text in three different writing systems: Greek, demotic, and hieroglyphic. This is known as a parallel text, which is important in current machine translation techniques.

- The fact that the Greek portion could be read easily was the key: it provided the “plain text” for discovering the hieroglyphic system (the “cipher text”).
The Rosetta stone (196 BC)

Hieroglyphic

Demotic

Greek
Deciphering hieroglyphics

- In 1814, Thomas Young focused on the **cartouche**: a set of hieroglyphs surround by a loop. The Rosetta stone had the cartouche of Pharaoh Ptolemy, who was mentioned in the Greek text several times.

- Young determined a number of sound correspondences correctly for hieroglyphs found in cartouches. Unfortunately, he didn’t follow this through because of the Kircher’s argument that hieroglyphs were logographic.

- Jean-Francois Champollion took the next step in 1822, and applied Young’s approach to other cartouches.
Champollion’s next step

- Deciphered the cartouche of Cleopatra using another bilingual text.
- Based on his ideas about the sound values of glyphs, he decoded his first “mystery” cartouche (no bilingual) text: *alksentrs*, i.e., *Alexandros* (Alexander the Great)
- He then got his first hieroglyphs from before the Graeco-Roman period, and “deciphered” the cartouche of Ramses.
- To do this, he made an educated guess that the Coptic language was the language of ancient Egyptian writing.
Champollion knew that \(\square \) was “s”, so he had \(?-?\-s\-s \).

Thought the \(\bigcirc \) could be the sun, which was “ra” in Coptic, so ra-?-s-s.

Observed that vowels were often left out, and only one Pharaonic name fit: Ramses, so \(\overline{\square} \) was “m”.

Egyptian scribes had used **the rebus principle**: long words are broken into their phonetic components, which are then represented as logographs:

- E.g., “belief” can be rewritten as “bee-leaf”, and then as

- Egyptian hieroglyphs is a mixture of such logographs and phonetic symbols.
Wrapping up hieroglyphs

The fact that the sun - ‘ra’ connection was established made the underlying language of ancient hieroglyphics known: Coptic. As we know from our previous discussion of decryption, knowing the language the cipher text is written in is a huge clue to deciphering it!

After this breakthrough, Champollion went on to break the rest of the system and published his work in 1824: for the first time in 14 centuries, it was possible to read the history of the pharaohs as written by their scribes.
The Voynich manuscript

- Slides from Kevin Knight, full talk available at:
 http://www.isi.edu/natural-language/people/voynich.pdf

- Note that VMS means “Voynich Manuscript”.
What is it?

- Medieval illustrated manuscript
- Approx. 235 pages on vellum material
- Color drawings of plants, nymphs, stars, etc.
- Approx. 38,000 words written in an unknown script
- Undeciphered!!! Meaning is unknown
- Currently owned by Yale University
Apparent sections of VMS

- Herbal (11,938 words)
- Astrological (2594 words)
- Biological (6915 words)
- Cosmological (679 words)
- Pharmacological (5111 words)
- Pure Text (10,682 words)
The Pictures: Herbal

Grafting?

Sunflower?
The Pictures: Herbal

- Strange vs ridiculous vs possible
- Many stems grafted onto roots
- Sunflower? Would date VMS as post-1492
- Dana Scott: 21 identifications (5 with confidence)
The Pictures: Astrological
The Pictures: Astrological

What is this?

Datable clothing?
The Pictures: Biological

Small nudes in baths

Interconnecting tubes of liquids
The Pictures: pharmacological

medicine jar?
The Text

- Approx. 38,000 words, unknown script
- Writing style similar to 15th century Florentine “humanist” hand
- Between 23 and 40 distinct characters
- No corrections, likely to have been copied
- Writing was done after illustrations
Transcription

BSC8AE 0PCC9 40E FCC89 40FCC9 40P9 SCBS9 40BSC9 EFAM OPAE29
2ZC9 40FC89 4OFAM Z89 40FCC9 SC89 40FCC9 40FCC9 ESC89 EOP9
8ZC9 4OPCCC9 8ARSC89 40FC9 40P9

last paragraph, f103r
Alphabet: currier/D’Imperio

Transcription

CSZ PFBV QXWY
JAEROID 678942
GH1 TU0 NM3 KL5
Alphabet: currier/D’Imperio

Transcription

Maybe this is really
IR IIR IIRR

There are several transcription schemes to choose from.
Letter Frequencies

<table>
<thead>
<tr>
<th>count</th>
<th>letter</th>
<th>count</th>
<th>letter</th>
<th>count</th>
<th>letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>25468</td>
<td>O</td>
<td>6</td>
<td>25468</td>
<td>O</td>
<td>0</td>
</tr>
<tr>
<td>20227</td>
<td>C</td>
<td>4</td>
<td>20227</td>
<td>C</td>
<td>4</td>
</tr>
<tr>
<td>17655</td>
<td>9</td>
<td>9</td>
<td>17655</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>14281</td>
<td>A</td>
<td>9</td>
<td>14281</td>
<td>A</td>
<td>9</td>
</tr>
<tr>
<td>12973</td>
<td>8</td>
<td>8</td>
<td>12973</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>11008</td>
<td>S</td>
<td>8</td>
<td>11008</td>
<td>S</td>
<td>8</td>
</tr>
<tr>
<td>10471</td>
<td>E</td>
<td>8</td>
<td>10471</td>
<td>E</td>
<td>8</td>
</tr>
<tr>
<td>10026</td>
<td>F</td>
<td>8</td>
<td>10026</td>
<td>F</td>
<td>8</td>
</tr>
<tr>
<td>6716</td>
<td>R</td>
<td>8</td>
<td>6716</td>
<td>R</td>
<td>8</td>
</tr>
<tr>
<td>5994</td>
<td>P</td>
<td>8</td>
<td>5994</td>
<td>P</td>
<td>8</td>
</tr>
<tr>
<td>5423</td>
<td>4</td>
<td>4</td>
<td>5423</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4501</td>
<td>Z</td>
<td>4</td>
<td>4501</td>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>4076</td>
<td>M</td>
<td>4</td>
<td>4076</td>
<td>M</td>
<td>4</td>
</tr>
<tr>
<td>2886</td>
<td>2</td>
<td>2</td>
<td>2886</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1752</td>
<td>N</td>
<td>2</td>
<td>1752</td>
<td>N</td>
<td>2</td>
</tr>
<tr>
<td>1413</td>
<td>B</td>
<td>2</td>
<td>1413</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>1046</td>
<td>J</td>
<td>2</td>
<td>1046</td>
<td>J</td>
<td>2</td>
</tr>
<tr>
<td>950</td>
<td>Q</td>
<td>2</td>
<td>950</td>
<td>Q</td>
<td>2</td>
</tr>
<tr>
<td>908</td>
<td>X</td>
<td>2</td>
<td>908</td>
<td>X</td>
<td>2</td>
</tr>
<tr>
<td>591</td>
<td>T</td>
<td>2</td>
<td>591</td>
<td>T</td>
<td>2</td>
</tr>
<tr>
<td>524</td>
<td>*</td>
<td>2</td>
<td>524</td>
<td>*</td>
<td>2</td>
</tr>
<tr>
<td>431</td>
<td>V</td>
<td>2</td>
<td>431</td>
<td>V</td>
<td>2</td>
</tr>
<tr>
<td>316</td>
<td>I</td>
<td>2</td>
<td>316</td>
<td>I</td>
<td>2</td>
</tr>
<tr>
<td>217</td>
<td>W</td>
<td>2</td>
<td>217</td>
<td>W</td>
<td>2</td>
</tr>
<tr>
<td>157</td>
<td>D</td>
<td>2</td>
<td>157</td>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>156</td>
<td>3</td>
<td>2</td>
<td>156</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Total

63k running characters
Most Frequent Words

<table>
<thead>
<tr>
<th>count</th>
<th>word</th>
<th>count</th>
<th>word</th>
<th>count</th>
<th>word</th>
</tr>
</thead>
<tbody>
<tr>
<td>863</td>
<td>8AM</td>
<td>865</td>
<td>8A2</td>
<td>297</td>
<td>8AM</td>
</tr>
<tr>
<td>537</td>
<td>OE</td>
<td>530</td>
<td>OFC9</td>
<td>198</td>
<td>OFC9</td>
</tr>
<tr>
<td>501</td>
<td>SC89</td>
<td>469</td>
<td>SC9</td>
<td>191</td>
<td>SC9</td>
</tr>
<tr>
<td>469</td>
<td>AM</td>
<td>426</td>
<td>ZC989</td>
<td>186</td>
<td>ZC989</td>
</tr>
<tr>
<td>426</td>
<td>ZC989</td>
<td>396</td>
<td>SOE</td>
<td>177</td>
<td>SOE</td>
</tr>
<tr>
<td>363</td>
<td>OR</td>
<td>350</td>
<td>AR</td>
<td>174</td>
<td>AR</td>
</tr>
<tr>
<td>344</td>
<td>SC9</td>
<td>318</td>
<td>8AR</td>
<td>155</td>
<td>8AR</td>
</tr>
<tr>
<td>308</td>
<td>OFC9C9</td>
<td>305</td>
<td>OFC9C9</td>
<td>155</td>
<td>OFC9C9</td>
</tr>
<tr>
<td>283</td>
<td>ZC9</td>
<td>279</td>
<td>OFAN</td>
<td>154</td>
<td>OFAN</td>
</tr>
<tr>
<td>272</td>
<td>OFC89</td>
<td>270</td>
<td>89</td>
<td>152</td>
<td>89</td>
</tr>
<tr>
<td>262</td>
<td>OFAM</td>
<td>260</td>
<td>AE</td>
<td>151</td>
<td>AE</td>
</tr>
<tr>
<td>253</td>
<td>8AE</td>
<td>243</td>
<td>2</td>
<td>147</td>
<td>2</td>
</tr>
<tr>
<td>219</td>
<td>SOR</td>
<td>216</td>
<td>SOR</td>
<td>144</td>
<td>SOR</td>
</tr>
</tbody>
</table>

Total counts: 5159

8116 distinct words

38k running words
Word Length Distributions

<table>
<thead>
<tr>
<th>Length</th>
<th>Distribution</th>
<th>Length</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.02</td>
<td>1</td>
<td>0.03</td>
</tr>
<tr>
<td>2</td>
<td>0.10</td>
<td>2</td>
<td>0.15</td>
</tr>
<tr>
<td>3</td>
<td>0.22</td>
<td>3</td>
<td>0.16</td>
</tr>
<tr>
<td>4</td>
<td>0.23</td>
<td>4</td>
<td>0.15</td>
</tr>
<tr>
<td>5</td>
<td>0.21</td>
<td>5</td>
<td>0.11</td>
</tr>
<tr>
<td>6</td>
<td>0.12</td>
<td>6</td>
<td>0.09</td>
</tr>
<tr>
<td>7</td>
<td>0.05</td>
<td>7</td>
<td>0.11</td>
</tr>
<tr>
<td>8</td>
<td>0.01</td>
<td>8</td>
<td>0.08</td>
</tr>
<tr>
<td>9</td>
<td>0.003</td>
<td>9</td>
<td>0.05</td>
</tr>
<tr>
<td>10</td>
<td>0.001</td>
<td>10</td>
<td>0.03</td>
</tr>
<tr>
<td>11</td>
<td>0.0001</td>
<td>11</td>
<td>0.01</td>
</tr>
<tr>
<td>12</td>
<td>0.00007</td>
<td>12</td>
<td>0.006</td>
</tr>
<tr>
<td>13</td>
<td>0.00002</td>
<td>13</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Counts on vocabulary, not running text
Features of the Text

- 115 (out of 8116) words appear doubled at least once

 ... 401fcc89 401fcc89 ...

- 8 words appear tripled at least once

 ... 401fcc89 401fcc89 401fcc89 ...
 ... 4008 4008 4008 ...
 ... 4008 4008 4008 ...
 ... 4008 4008 4008 ...
 ... 4008 4008 4008 ...
 ... 4008 4008 4008 ...
 ... 4008 4008 4008 ...
 ... 4008 4008 4008 ...
 ... 401fcc89 401fcc89 401fcc89 ...
Some Experiments I Did

• Is VMS a phonetic writing system for some known language?

• Is VMS a sort of substitution cipher?

• It’s been proposed that VMS is written in a form of vowel-less Ukrainian …
Automatic deciphering

- Writing systems can be seen as substitution ciphers for spoken languages.
 - Speech=plaintext: D I Y S A Y F E R M E H N T I H Z
 - Writing=ciphertext: decipherment is ...

- So, we’d like to find the most probable sequence of sounds p (for plaintext) for a given writing sample c (ciphertext)
 - This means we want to find argmax_p P(plc)
Automatic deciphering

- The noisy channel model again!

\[
P(p|c) = \frac{P(c|p) \times P(p)}{P(c)} \propto P(c|p) \times P(p)
\]

- So, we can solve:

\[
\text{argmax}_p P(p|c) = \text{argmax}_p P(c|p) \times P(p)
\]
Automatic deciphering

- The noisy channel model again!

\[P(p|c) = \frac{P(c|p) \times P(p)}{P(c)} \propto P(c|p) \times P(p) \]

- So, we can solve:

\[\text{argmax}_p P(p|c) = \text{argmax}_p P(c|p) \times P(p) \]

Substitution Model (like the error model in spelling correction)
Automatic deciphering

- The noisy channel model again!

\[
P(p|c) = \frac{P(c|p) \times P(p)}{P(c)} \propto P(c|p) \times P(p)
\]

- So, we can solve:

\[
\arg\max_p P(p|c) = \arg\max_p P(c|p) \times P(p)
\]

Substitution Model (like the error model in spelling correction)

Language Model
Automatic deciphering

- The noisy channel model again!

\[P(p|c) = \frac{P(c|p) \times P(p)}{P(c)} \propto P(c|p) \times P(p) \]

- So, we can solve:

\[\arg\max_p P(p|c) = \arg\max_p P(c|p) \times P(p) \]

- Substitution Model (like the error model in spelling correction)
- Language Model
- We know how to build this for a given language.
Automatic deciphering

- The noisy channel model again!

\[P(p|c) = \frac{P(c|p) \times P(p)}{P(c)} \propto P(c|p) \times P(p) \]

- So, we can solve:

\[
\arg\max_p P(p|c) = \arg\max_p P(c|p) \times P(p)
\]

Substitution Model (like the error model in spelling correction)

Language Model

We know how to build this for a given language.

But where do we get this?!
Automatic Decipherment Using EM

[Expectation-Maximization: a very important technique in machine learning]

LM

plaintext samples, unrelated to ciphertext

EM

Find substitution-table values that maximize

\[P(c) = \sum_p P(p, c) = \sum_p P(p) * P(c | p) \]

ciphertext c

\[P(p) \]

plaintext p

\[P(c | p) \]

ciphertext c

best guess plaintext p

Viterbi

Find plaintext p that maximizes

\[P(p | c) \sim P(p) * P(c | p) \]
Phonetic Decipherment

Decoder maximize $P(p) \times P(c \mid p)^3$
Smooth $P(p)$ with lambdas
Use per-symbol lambdas
Final Trigram $P(p)$

805 errors / 6980
684
621
492 (7%)

Automatic decipherment pronounces 93% of written letters correctly

primera parte del ingenioso hidalgo don ...
(Don Quixote)
Unknown Source Language

• Suppose source language is unknown?
 ceze ceg qy ataf uqyt qa dwg q y zapu ...
 VAS92 9FAE AR APAM ZOE ZOR9 QOR92 9 FOR ...

• Decode against all spoken languages:
 – Pre-collect phonetic models for 300 languages
 – Decipher against each
 – See which decoding run yields highest probability
UN Declaration of Human Rights

300+ words in many of world’s languages, UTF-8 encoding

No one shall be arbitrarily deprived of his property
Niemand se eiendom sal arbitrêr afgeneem word nie
Asnjéri nuk duhet të privohet arbitarisht nga pasuria e tij
لا يجوز نجح أحد من ملكه تحصا
Janiw khitisa utaps oraqeps inaki aparkaspati
Arrazoirik gabe ez zaio inori bere jabegoa kenduko
Den ebet ne vo tennet e berc'hentiezj digantañ diouzh c'hoant
Никой не трябва да бъде произволно лишен от своята собственост
Ningú no será privat arbitrariament de la seva propietat
任何人的财产不得任意剥夺。
Di a so prupiità ûn ni pò essa privu nimu di modu tirannicu
Nitko ne smije samovoljno biti lišen svoje imovine
Nikdo nesmí být svévolně zbaven svého majetku
Ingen må villkärligt beröves sin ejendom
Niemand mag willekeurig van zijn eigendom worden beroofd
Nul ne peut être arbitrairement privé de sa propriété
Nimmen mei samar fan syn eigendom berôve wurde
Ninguín será privado arbitrariamente da suá propiedade
Niemand darf willkürlich seine Eigentums beraubt werden
Канеиц дэв мупить вя стернёй ви адаяртэ тэн идзютэ ряк Ававэгуи ндоје’а ва’ераи оймахича реинте имбае тээва
Ba wanda za a kwace wa dukiyarsa ba tare da cikakken dalili ba
Senkit sem lehet tulajdonától önkényesen megfosztani
Engan má eftir geðbóttta svipta eign sinni
Tak seorang pun boleh dirampas hartanya dengan semena-mena
Necuno essera private arbitrarimente de su proprietate
Ni fédir a mhaoin a bhaint go forlámhach de dhuine ar bith
Al neniust arbitre forprenta lia proprietio
Kelleltki ei tohi tema vara meevaldselt ära vôleta
Eingin skal hissini vera fyrri ongartaku
Me kua ni dua e kovei vua na nona iyau
Keltäänälköön mielivaltaisestiristettäköhänemmomaisuuttaan
Unknown source language

- Input:
 cevzren cnegr qry vatravbfb uvqnytb qba dhvwbgr qr yn znapun ...

- Languages with best Prob after deciphering?
Unknown Source Language

- **Input:**
 cevzren cnegqry vatrabfb uvqnytb qba dhvwbgr qr yn znapun ...

- **Top 5 languages with best Prob after deciphering:**
 -5.29120 spanish
 -5.43346 galician
 -5.44087 portuguese
 -5.48023 kurdish
 -5.49751 romanian

- **Best-path decoding assuming plaintext is Spanish:**
 primera parte del ingenioso hidalgo don quijote de la mancha ...

- **Simultaneous decipherment and language ID**
Voynich manuscript

• Input:
 VAS92 9FAE AR APAM ZOE ZOR9 QOR92 9 FOR ZOE89 ...

• Languages with best Prob after deciphering?
Voynich manuscript

• Input:
 VAS92 9FAE AR APAM ZOE ZOR9 QOR92 9 FOR ZOE89 ...

• Top 10 languages with best Prob after deciphering:
 -1.03444 romanian -1.03546 occitan
 -1.03490 zhuang -1.03568 croatian
 -1.03494 polish -1.03575 chinese
 -1.03498 kurdish -1.03587 albanian
 -1.03516 siswati -1.03594 lingala

• Best-path decoding assuming plaintext is Latin:
 quiss squm is ONUM pom quss hates s qum hatis ...
Summing up the Voynich manuscript

- Frequency analysis of characters and words provides evidence that it is a real text. (Though, actually, there are ways of mimicking even this.)

- But, even if it isn’t a hoax, we don’t know the language in which the Voynich manuscript is written, which makes it much harder to get anywhere with decoding it.

- Modern computational linguistics techniques that can be used for deciphering might allow us to detect what the source language actually is (though not necessarily the source text).
Appendix: The key and answer to the cipher text...

- Reverse the alphabet and then shift:

Plain alphabet: abcdefghijklmnopqrstuvwxyz
Cipher alphabet: MLKJIHGFEDCBAZYZWVUTSRQPON

- Here’s the unix command:

```
tr 'MLKJIHGFEDCBAZYZWVUTSRQPON' 'a-z'
```

- And the decoded text (from Tolstoy):

```
i would not change my way of life for yours," said she. "we may
live roughly, but at least we are free from anxiety. you live in
better style than we do, but though you often earn more than you
need, you are very likely to lose all you have. you know the proverb,
'loss and gain are brothers twain.' it often happens that people who
are wealthy one day are begging their bread the next. our way is
safer. though a peasant's life is not a fat one, it is a long one.
we shall never grow rich, but we shall always have enough to eat.
```