The Computer and Natural Language
(Ling 445/515)

Special Topic: Grammatical Error Detection

Ross Israel
Dept. of Linguistics, Indiana University
Autumn 2010
What Is Grammatical Error Detection?

We will be talking about errors made by learners in a second language acquisition context.

Language Learners often make non-native-like mistakes when constructing sentences:

- We arrived to the station.
- There is the garden in my house.
- I eat rice, nikujaga and salada yesterday.

Grammatical Error Detection entails trying to find these mistakes automatically.
Where Is This Useful?

- Automatic grading
 - Language teachers
 - Standardized testing
- Analysis and annotation of learner data for research
- Language learning software (ICALL)
Where We Come In

- CALL: Computer Assisted Language Learning
Where We Come In

- **CALL**: Computer Assisted Language Learning
 - Using computers and media in language learning and teaching
Where We Come In

- CALL: Computer Assisted Language Learning
 - Using computers and media in language learning and teaching
 - Rosetta Stone, eLanguage
Where We Come In

- CALL: Computer Assisted Language Learning
 - Using computers and media in language learning and teaching
 - Rosetta Stone, eLanguage
 - Exercises are typically very simple in design, and offer little feedback
Where We Come In

▶ CALL: Computer Assisted Language Learning
 ▶ Using computers and media in language learning and teaching
 ▶ Rosetta Stone, eLanguage
 ▶ Exercises are typically very simple in design, and offer little feedback

▶ ICALL: Intelligent Computer Assisted Language Learning
 ▶ Utilize computational linguistics tools, such as POS tagging and Parsing along with statistical language modeling strategies
Where We Come In

- **CALL**: Computer Assisted Language Learning
 - Using computers and media in language learning and teaching
 - Rosetta Stone, eLanguage
 - Exercises are typically very simple in design, and offer little feedback

- **ICALL**: Intelligent Computer Assisted Language Learning
 - Utilize computational linguistics tools, such as POS tagging and Parsing along with statistical language modeling strategies
 - But, these tools often need to be altered to expect and diagnose errors, or at least handle learner data better
Where We Come In

► CALL: Computer Assisted Language Learning
 ► Using computers and media in language learning and teaching
 ► Rosetta Stone, eLanguage
 ► Exercises are typically very simple in design, and offer little feedback

► ICALL: Intelligent Computer Assisted Language Learning
 ► Utilize computational linguistics tools, such as POS tagging and Parsing along with statistical language modeling strategies
 ► But, these tools often need to be altered to expect and diagnose errors, or at least handle learner data better
 ► Focus on precision; we don’t want to tell a learner that they’ve made a mistake when they haven’t!
What is an Error?

▶ For things like the wrong word choice or a missing word, it’s fairly easy to say that there is an error.
▶ But, sometimes it’s difficult to categorize an anomaly as an error.
▶ The most frequent errors in English writing involve comma usage.
 ▶ These may be mechanical or grammatical, i.e. they might not necessarily indicate misunderstanding of a grammatical rule.
▶ What about spelling errors?
 ▶ typos
 ▶ misuse of morphology
Learners typically make different kinds of mistakes than native speakers.

- **Content Word Choice**
 - We need to deliver the merchandise on a daily *base/basis*.

- **Preposition Error**
 - Our society is developing *in/at high* speed.

- **Determiner Error**
 - There is *the/a* garden in my house.
Motivation

Some common areas of research in English error detection are articles, prepositions, and collocations. We’ll look a little more in depth about prepositions.
Motivation

Some common areas of research in English error detection are articles, prepositions, and collocations. We’ll look a little more in depth about prepositions.

► Because prepositions make up a large portion of errors commonly made by learners, there has been a good deal of research on how to find and diagnose preposition errors.

► Also, prepositions are a closed set, so it’s a problem that’s easier to define than a more open error type like use of the wrong content word.

► Prepositions can be treated as a confusion set where we know that one is being substituted for another.
Cloze Test

- Choosing the correct preposition can be a tough task even for native speakers
Choosing the correct preposition can be a tough task even for native speakers.

There has been concern about syncing phone contacts to Facebook. "As long as you are aware of who is the group it can be a great privacy tool. If it gets out hand it could give you a sense of false security." The roll out of new products comes with reports that a syncing feature lets Facebook access contact data and share it with the site. "It’s very possible that your private phone numbers - and those lots of your and their friends - are on the site," said Charles Arthur of the Guardian newspaper.
Choosing the correct preposition can be a tough task even for native speakers.

There has been concern over syncing phone contacts with Facebook. "As long as you are aware of who is in the group it can be a great privacy tool. If it gets out of hand it could give you a sense of false security." The roll out of new products comes amid reports that a syncing feature on the iPhone lets Facebook access contact data and share it on the site. "It’s very possible that your private phone numbers - and those of lots of your and their friends - are on the site," said Charles Arthur of the Guardian newspaper.
Commonly Used Techniques

- **Language Model - Gamon et al. (2008)**
 - Build n-grams of POS and/or parsing labels from native text and check if learner data n-grams align with the model we build

- **Web-based methods - Gamon and Leacock (2010)**
 - Take a few words of context on either side of a preposition to generate a web query
 - Replace the preposition with neighbors from a confusion set and search those queries
 - The search with the greatest number of hits is selected as the right answer

- **Heuristic-based systems - Eeg-Olofsson and Knutsson (2003)**
 - Write linguistic rules designed to find errors in learner data

- **Statistical - Tetreault and Chodorow (2008)**
 - Statistical methods means building a classifier
 - So, what is a classifier?
Machine learning is not as scary as it sounds!

- There are a number of algorithms for classification that we could talk about
 - Maximum Entropy, Support Vector Machines, Memory Based Learning
 - Each method requires different representations of information
 - These slides are indicative of Memory Based Learning
 - Easy to install
 - Easy to use
 - Works well with language data
Running TiMBL

▶ We will need two sets of data:
 ▶ Training Set - needs to be big
 ▶ Testing Set - usually smaller
▶ The data sets are full of events (instances) that contain features that describe the circumstances of the event and a class that is the answer we are trying to guess
▶ With a little bit of python, you can extract features pretty easily to train and run TiMBL
 ▶ Open a file (e.g. a POS tagged file)
 ▶ Extract bits of text (features) that you deem useful
 ▶ Print those bits of text on a single line for each instance
 ▶ The real trick is selecting appropriate features
Selecting Features

Let’s consider a real-world example:

- **The Task**: We want to classify the weather as either **good** or **bad**.
- **We would want features like**
 - temperature
 - sunny?
 - cloudy?
 - windy?
 - humidity level
 - rain/snow/none
Running the Classifier

- Then, we would build vectors for every measurement we take and *label* them to build training data:
 - 75, yes, no, no, 70%, none, **good**
 - 35, no, no, yes, 50%, none, **bad**
 - 105, yes, no, no, 98%, rain, **bad**
 - 68, yes, yes, no, 75%, none, **good**

- Now, when we give the classifier an unknown feature vector, we hope that it makes a wise decision...
Running the Classifier

Then, we would build vectors for every measurement we take and *label* them to build training data:

- 75, yes, no, no, 70%, none, **good**
- 35, no, no, yes, 50%, none, **bad**
- 105, yes, no, no, 98%, rain, **bad**
- 68, yes, yes, no, 75%, none, **good**

Now, when we give the classifier an unknown feature vector, we hope that it makes a wise decision

- 85, yes, no, no, 65%, none - classifier’s guess = **good**
Running the Classifier

- Then, we would build vectors for every measurement we take and *label* them to build training data:
 - 75, yes, no, no, 70%, none, **good**
 - 35, no, no, yes, 50%, none, **bad**
 - 105, yes, no, no, 98%, rain, **bad**
 - 68, yes, yes, no, 75%, none, **good**

- Now, when we give the classifier an unknown feature vector, we hope that it makes a wise decision
 - 85, yes, no, no, 65%, none - classifier’s guess = **good** yay!
 - 75, yes, no, yes, 70%, none - classifier’s guess = **bad** oops!
 - 15, no, no, yes, 70%, snow - classifier’s guess = **bad** yay!
 - 68, yes, yes, no, 75%, none - classifier’s guess = **good** yay!
Running the Classifier

- Then, we would build vectors for every measurement we take and *label* them to build training data:
 - 75, yes, no, no, 70%, none, good
 - 35, no, no, yes, 50%, none, bad
 - 105, yes, no, no, 98%, rain, bad
 - 68, yes, yes, no, 75%, none, good

- Now, when we give the classifier an unknown feature vector, we hope that it makes a wise decision:
 - 85, yes, no, no, 65%, none - classifier’s guess = good yay!
 - 15, no, no, yes, 70%, snow - classifier’s guess = bad yay!
Running the Classifier

- Then, we would build vectors for every measurement we take and *label* them to build training data:
 - 75, yes, no, no, 70%, none, *good*
 - 35, no, no, yes, 50%, none, *bad*
 - 105, yes, no, no, 98%, rain, *bad*
 - 68, yes, yes, no, 75%, none, *good*

- Now, when we give the classifier an unknown feature vector, we hope that it makes a wise decision:
 - 85, yes, no, no, 65%, none - classifier’s guess = *good* yay!
 - 15, no, no, yes, 70%, snow - classifier’s guess = *bad* yay!
 - 75, yes, no, yes, 70%, none - classifier’s guess = *bad*
Running the Classifier

▶ Then, we would build vectors for every measurement we take and *label* them to build training data:
 - 75, yes, no, no, 70%, none, good
 - 35, no, no, yes, 50%, none, bad
 - 105, yes, no, no, 98%, rain, bad
 - 68, yes, yes, no, 75%, none, good

▶ Now, when we give the classifier an unknown feature vector, we hope that it makes a wise decision
 - 85, yes, no, no, 65%, none - classifier’s guess = good yay!
 - 15, no, no, yes, 70%, snow - classifier’s guess = bad yay!
 - 75, yes, no, yes, 70%, none - classifier’s guess = bad oops!
Tetreault and Chodorow used a maximum entropy classifier to try to find preposition confusions and extraneous uses.

They extracted 25 features including:

- words/POS tags in a 2 word window (+/-) around preposition
- the head verb and noun of the preceding VP and NP
- the head noun of the following NP

Their system achieved 84% precision and 19% recall. This might sound low, but keep in mind, we want to get the best possible precision, even if it means losing recall.
Tetreault and Chodorow used a maximum entropy classifier to try to find preposition confusions and extraneous uses.

They extracted 25 features including:

- words/POS tags in a 2 word window (+/-) around preposition
- the head verb and noun of the preceding VP and NP
- the head noun of the following NP

John went *to* the store this morning.

- word+POS bigrams: went_VBD, the_DET
- head of previous VP = went
- head of previous NP = John

Their system achieved 84% precision and 19% recall.

This might sound low, but keep in mind, we want to get the best possible precision, even if it means losing recall.
Korean language learning

- This is based on work that Markus and I have been doing with Sun-Hee Lee - Dickinson et al. (2010)
- Ultimate goal: develop computational tools to assist learners of Korean
This is based on work that Markus and I have been doing with Sun-Hee Lee - Dickinson et al. (2010)

Ultimate goal: develop computational tools to assist learners of Korean

Korean has a number of features uncommon to Western languages:

- agglutinative morphology, rich system of case marking, relatively free word order
Korean language learning

- This is based on work that Markus and I have been doing with Sun-Hee Lee - Dickinson et al. (2010)
- Ultimate goal: develop computational tools to assist learners of Korean
- Korean has a number of features uncommon to Western languages:
 - agglutinative morphology, rich system of case marking, relatively free word order
 - One prominent area of difficulty for learners is that of post-positional particles
Korean language learning

- This is based on work that Markus and I have been doing with Sun-Hee Lee - Dickinson et al. (2010)
- Ultimate goal: develop computational tools to assist learners of Korean
- Korean has a number of features uncommon to Western languages:
 - agglutinative morphology, rich system of case marking, relatively free word order
 - One prominent area of difficulty for learners is that of post-positional particles

We want to build a machine learner to detect errors in particles
Background: Korean particles

- Similar to English prepositions, but wider range of functions:

- Case marker/Semantic role markers:
  ```
  John-eykey
  book-OBJ
  'Sumi reads a book to John.'
  ```

- Modifiers (cf. prepositions): indicate specific lexical, syntactic, & semantic information between verb & noun
  ```
  John-uy
  house-LOC
  'Sumi waited for John for (the whole) two hours in his house.'
  ```
Background: Korean particles

- Similar to English prepositions, but wider range of functions:
 - Case marker/Semantic role markers:

(1) Sumi-\textbf{ka} John-\textbf{eykey} chayk-\textbf{ul} ilhke-yo
 Sumi-SBJ John-to book-OBJ read-polite
 ‘Sumi reads a book to John.’
Background: Korean particles

- Similar to English prepositions, but wider range of functions:
 - Case marker/Semantic role markers:
 1. Sumi-ka John-eykey chayk-ul ilhke-yo
 Sumi-SBJ John-to book-OBJ read-polite
 ‘Sumi reads a book to John.’
 - Modifiers (cf. prepositions): indicate specific lexical, syntactic, & semantic information between verb & noun
 2. Sumi-ka John-uy cip-eyse ku-lul twu
 Sumi-SBJ John-GEN house-LOC he-OBJ two
 sikan-ul kitaly-ess-ta.
 hours-OBJ wait-PAST-END
 ‘Sumi waited for John for (the whole) two hours in his house.’
Korean particles: expected errors

Learners of Korean often misuse particles

(3) a. Sumi-*nun* chayk-*i* philyohay-yo
 Sumi-TOP book-SBJ need-polite
 ‘Sumi needs a book.’
Korean particles: expected errors

Learners of Korean often misuse particles

(3) a. Sumi-\textit{nun} chayk-\textit{i} philyohay-yo
 Sumi-TOP book-SBJ need-polite
 ‘Sumi needs a book.’

 b. *Sumi-nun chayk-\textbf{ul} philyohay-yo
 Sumi-TOP book-OBJ need-polite
 ‘Sumi needs a book.’
Korean particles: expected errors

Learners of Korean often misuse particles

(3) a. Sumi-nun chayk-i philyohay-yo
 Sumi-TOP book-SBJ need-polite
 ‘Sumi needs a book.’

 b. *Sumi-nun chayk-ul philyohay-yo
 Sumi-TOP book-OBJ need-polite
 ‘Sumi needs a book.’

particle errors by learners of Korean can be categorized into 6 types:

▶ omission, replacement, addition, malformation, paraphrasing, and spacing
Machine learning paradigm

Parallel errors made by ESL learners for prepositions

- We can base our system on the work by Tetreault and Chodorow, but we need to consider the differences between English and Korean.
Parallel errors made by ESL learners for prepositions

- We can base our system on the work by Tetreault and Chodorow, but we need to consider the differences between English and Korean

Some major differences in Korean:

- Particles are post-positional - they show up after a word instead of before it like in English
- Base word order is SOV
 - Need to look at following verb & following noun
- Morphological composition of words is different
 - Agglutinative: stem + suffixes
Our Features

- For this experiment, we used TiMBL
- The feature vector is built on a five word window that includes the target word and two words (±) for context.
Our Features

- For this experiment, we used TiMBL.
- The feature vector is built on a five word window that includes the target word and two words (+/-) for context.
- Each word is broken down into four features:
 - Stem, affixes, stem_POS, affixes_POS
 - Use trigram+rule based morphological tagger for Korean
 - Include features for preceding and following nouns & verbs (roots only)
- If the target word affixes contains a particle, it is removed and used as the class; otherwise the class is NONE.
 - In this study, we only predicted a particle’s presence (Y/N)
An Example Instance

use-Past-Decl

‘While living in America, (I/she/he) used only English at home.’

b. Mikwuk NPR NONE NONE
sal VV myense ECS
Yenge NPR NONE NONE
cip NNC NONE NONE
ss VV ess+eyo EPF+EFN
sal Mikwuk ss cip
YES
Results

- Our system was able to achieve around 84% precision and around 81% recall for this task.
- The recall is higher here because the task is simpler than guessing *which* particle is best, we just try to guess *if* there should be a particle.
- We are currently continuing this work by adding the decision of which particle to use, as well as using a different machine learning algorithm.
References