Parsing with CFGs

Linguistics 545
Spring 2010
Parsing with CFGs: Overview

Input: a string

Output: a (single) parse tree

- A useful step in the process of obtaining meaning
- We can view the problem as searching through all possible parses (tree structures) to find the right one

Strategies:

- top-down (goal-directed) vs. bottom-up (data-directed)
- depth-first vs. breadth-first
- adding bottom-up to top-down: left-corner parsing
- making it more efficient: chart parsing (i.e., saving partial results)
Parsers and criteria to evaluate them

• Function of a parser:
 – grammar + string → analysis trees

• Main criteria for evaluating parsers:
 – Correctness: for every grammar and for every string, every analysis returned by parser is an actual analysis
 * Correctness w.r.t. our target language is thus dependent upon the grammar we give the parser
 – Completeness: for every grammar and for every string, every correct analysis is found by the parser
 * May not always be practical, and we may want only one analysis
 – Efficiency: storing partial parses is essential in being efficient (to be explained)
Example grammar and desired tree

Sentence: Book that flight.

- $S \rightarrow NP\ VP$
- $S \rightarrow Aux\ NP\ VP$
- $S \rightarrow VP$
- $NP \rightarrow Det\ Nominal$
- $Nominal \rightarrow Noun$
- $Nominal \rightarrow Noun\ Nominal$
- $Nominal \rightarrow Nominal\ PP$
- $NP \rightarrow Proper-Noun$
- $VP \rightarrow Verb$
- $VP \rightarrow Verb\ NP$
Direction of processing I: Top-down

Goal-driven processing is Top-down:

- Start with the start symbol
- Derive sentential forms.
- If the string is among the sentences derived this way, it is part of the language.

Problem: Left-recursive rules (e.g., NP → NP PP) can give rise to infinite hypotheses

- Plus, we can expand non-terminals which cannot lead to the existing input
- No tree takes the properties of the lexical items into account until the last stage
How are alternatives explored? I. Depth-first

- At every choice point: Pursue a single alternative completely before trying another alternative.

- State of affairs at the choice points needs to be remembered. Choices can be discarded after unsuccessful exploration.

- Depth-first search is not necessarily complete.

Problem for top-down, left-to-right, depth-first processing:

- left-recursion
 For example, a rule like $N' \rightarrow N' PP$ leads to non-termination.
How are alternatives explored? II. Breadth-first

- At every choice point: Pursue every alternative for one step at a time.

- Requires serious bookkeeping since each alternative computation needs to be remembered at the same time.

- Search is guaranteed to be complete.
An example grammar

Lexicon:
\[
\begin{align*}
Vt & \rightarrow \text{saw} \\
\text{Det} & \rightarrow \text{the} \\
\text{Det} & \rightarrow \text{a} \\
N & \rightarrow \text{dragon} \\
N & \rightarrow \text{boy} \\
\text{Adj} & \rightarrow \text{young}
\end{align*}
\]

Syntactic rules:
\[
\begin{align*}
S & \rightarrow \text{NP VP} \\
\text{VP} & \rightarrow \text{Vt NP} \\
\text{NP} & \rightarrow \text{Det N} \\
N & \rightarrow \text{Adj N}
\end{align*}
\]
Top-Down, left-right, depth-first tree traversal

S₁

NP₂

VP₁₀

Det₃ N₅

Vt₁₁ NP₁₃

Adj₆ N₈

det₁₄ N₁₆

the₄ young₇ boy₉ saw₁₂ a₁₅ dragon₁₇

S → NP VP
VP → Vt NP
NP → Det N
N → Adj N

Vt → saw
Det → the
Det → a
N → dragon
N → boy
Adj → young
A walk-through

<table>
<thead>
<tr>
<th>Goal</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>the young boy saw the dragon</td>
<td>expand S</td>
</tr>
<tr>
<td>NP VP</td>
<td>the young boy saw the dragon</td>
<td>expand NP</td>
</tr>
<tr>
<td>Det N VP</td>
<td>the young boy saw the dragon</td>
<td>expand Det</td>
</tr>
<tr>
<td>the N VP</td>
<td>the young boy saw the dragon</td>
<td>consume the</td>
</tr>
<tr>
<td>N VP</td>
<td>young boy saw the dragon</td>
<td>expand N</td>
</tr>
<tr>
<td>dragon VP</td>
<td>young boy saw the dragon</td>
<td>fail with dragon</td>
</tr>
<tr>
<td>boy VP</td>
<td>young boy saw the dragon</td>
<td>fail with boy; (re)expand N</td>
</tr>
<tr>
<td>Adj N VP</td>
<td>young boy saw the dragon</td>
<td>expand Adj</td>
</tr>
<tr>
<td>young N VP</td>
<td>young boy saw the dragon</td>
<td>consume young</td>
</tr>
<tr>
<td>N VP</td>
<td>boy saw the dragon</td>
<td>expand N</td>
</tr>
</tbody>
</table>
A walk-through (cont.)

<table>
<thead>
<tr>
<th>Goal</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>dragon VP</td>
<td>boy saw the dragon</td>
<td>fail with dragon</td>
</tr>
<tr>
<td>boy VP</td>
<td>boy saw the dragon</td>
<td>consume boy</td>
</tr>
<tr>
<td>VP</td>
<td>saw the dragon</td>
<td>expand VP</td>
</tr>
<tr>
<td>Vt NP</td>
<td>saw the dragon</td>
<td>expand Vt</td>
</tr>
<tr>
<td>saw NP</td>
<td>saw the dragon</td>
<td>consume saw</td>
</tr>
<tr>
<td>NP</td>
<td>the dragon</td>
<td>expand NP</td>
</tr>
<tr>
<td>Det N</td>
<td>the dragon</td>
<td>expand Det</td>
</tr>
<tr>
<td>the N</td>
<td>the dragon</td>
<td>consume the</td>
</tr>
<tr>
<td>N</td>
<td>dragon</td>
<td>expand N</td>
</tr>
<tr>
<td>dragon</td>
<td>dragon</td>
<td>consume dragon</td>
</tr>
<tr>
<td><empty></td>
<td><empty></td>
<td>SUCCESS!</td>
</tr>
</tbody>
</table>
Remaining choices

There are still some choices that have to be made:

1. Which leaf node should be expanded first?
 - Left-to-right strategy moves through the leaf nodes in a left-to-right fashion

2. Which rule should be applied first for multiple rules with same LHS?
 - Can just use the textual order of rules from the grammar
 - There may be reasons to take rules in a particular order (e.g., probabilities)
Parsing with an agenda

Search states are kept in an agenda

- Search states consist of partial trees and a pointer to the next input word in the sentence

Based on what we’ve seen before, apply the next item on the agenda to the current tree

- Add new items to (the front of) the agenda, based on the rules in the grammar which can expand at the (leftmost) node
 - We maintain the depth-first strategy by adding new hypotheses (rules) to the front of the agenda
 - If we added them to the back, we would have a breadth-first strategy
Direction of processing II: Bottom-up

Data-driven processing is Bottom-up:

- Start with the sentence.
- For each substring, find a grammar rule which covers it.
- If you finish with a sentence, it is grammatical.

Problem: Epsilon rules \(N \rightarrow \epsilon \) allow us to hypothesize empty categories anywhere in the sentence.

- Also, while any parse in progress is tied to the input, many may not lead to an S!
Bottom-up, left-right, depth-first tree traversal

S_{17}

NP$_8$

VP$_{16}$

Det$_2$ N$_7$

Vt$_{10}$ NP$_{15}$

Adj$_4$ N$_6$

Det$_{12}$ N$_{14}$

the$_1$ young$_3$ boy$_5$

saw$_9$ a$_{11}$ dragon$_{13}$

$S \to$ NP VP

VP \to Vt NP

NP \to Det N

N \to Adj N

Vt \to saw

Det \to the

Det \to a

N \to dragon

N \to boy

Adj \to young
A walk-through

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><empty></td>
<td>the young boy saw the dragon</td>
<td>shift the</td>
</tr>
<tr>
<td>the</td>
<td>young boy saw the dragon</td>
<td>reduce the to Det</td>
</tr>
<tr>
<td>Det</td>
<td>young boy saw the dragon</td>
<td>shift young</td>
</tr>
<tr>
<td>Det young</td>
<td>boy saw the dragon</td>
<td>after failing to reduce Det</td>
</tr>
<tr>
<td>Det Adj</td>
<td>boy saw the dragon</td>
<td>reduce young to Adj</td>
</tr>
<tr>
<td>Det Adj boy</td>
<td>saw the dragon</td>
<td>after failing to reduct Det young</td>
</tr>
<tr>
<td>Det Adj N</td>
<td>saw the dragon</td>
<td>shift boy</td>
</tr>
<tr>
<td>Det N</td>
<td>saw the dragon</td>
<td>reduce Adj N to N</td>
</tr>
<tr>
<td>NP</td>
<td>saw the dragon</td>
<td>reduce Det N to NP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>shift saw</td>
</tr>
</tbody>
</table>
A walk-through (cont.)

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP saw</td>
<td>the dragon</td>
<td>reduce saw to Vt</td>
</tr>
<tr>
<td>NP Vt</td>
<td>the dragon</td>
<td>shift the</td>
</tr>
<tr>
<td>NP Vt the dragon</td>
<td>dragon</td>
<td>reduce the to Det</td>
</tr>
<tr>
<td>NP Vt Det dragon</td>
<td>dragon</td>
<td>shift dragon</td>
</tr>
<tr>
<td>NP Vt Det N</td>
<td><empty></td>
<td>reduce Det N to NP</td>
</tr>
<tr>
<td>NP Vt NP</td>
<td><empty></td>
<td>reduce Vt NP to VP</td>
</tr>
<tr>
<td>NP VP</td>
<td><empty></td>
<td>reduce NP VP to S</td>
</tr>
<tr>
<td>S</td>
<td><empty></td>
<td>SUCCESS!</td>
</tr>
</tbody>
</table>
Left-corner parsing

Motivation:

• Both pure top-down and bottom-up approaches are inefficient
• The correct top-down parse has to be consistent with the left-most word of the input

Left-corner parsing: a way of using bottom-up constraints as part of a top-down strategy.

• Left-corner rule: expand a node with a grammar rule only if the current input can serve as the left corner from this rule.
• Left-corner from a rule: first word along the left edge of a derivation from the rule

Put the left-corners into a table, which can then guide parsing
Grammar with left-corners

<table>
<thead>
<tr>
<th>Lexicon:</th>
<th>Syntactic rules:</th>
<th>Left corners:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vt → saw</td>
<td>S → NP VP</td>
<td>S ⇒ Det</td>
</tr>
<tr>
<td>Det → the</td>
<td>VP → Vt NP</td>
<td>VP ⇒ Vt</td>
</tr>
<tr>
<td>Det → a</td>
<td>NP → Det N</td>
<td>NP ⇒ Det</td>
</tr>
<tr>
<td>N → dragon</td>
<td>N → Adj N</td>
<td>N ⇒ Adj</td>
</tr>
<tr>
<td>N → boy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adj → young</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Left corner parsing example

Consider again the sentence *book that flight*, with these rules:

\[
\begin{align*}
S & \rightarrow \text{NP VP} \\
S & \rightarrow \text{Aux NP VP} \\
S & \rightarrow \text{VP} \\
\text{NP} & \rightarrow \text{Det Nom.}
\end{align*}
\]

\[
\begin{align*}
\text{Nom.} & \rightarrow \text{Noun} \\
\text{Nom.} & \rightarrow \text{Noun Nom.} \\
\text{Nom.} & \rightarrow \text{Nom. PP} \\
\text{NP} & \rightarrow \text{Proper-Noun} \\
\text{VP} & \rightarrow \text{Verb} \\
\text{VP} & \rightarrow \text{Verb NP}
\end{align*}
\]

When we see an ambiguous word like *book*, the left corners immediately tell us that the Noun reading is ruled out—that cannot start an S

\[
\begin{align*}
S & \Rightarrow \text{Aux} \\
S & \Rightarrow \text{Det} \\
S & \Rightarrow \text{Proper-Noun}
\end{align*}
\]

\[
\begin{align*}
S & \Rightarrow \text{Verb} \\
\text{NP} & \Rightarrow \text{Det} \\
\text{NP} & \Rightarrow \text{Proper-Noun}
\end{align*}
\]

Moving top-down, when we hypothesize \(S \rightarrow \text{NP VP}\), we see that the NP’s left-corner is incompatible with any category of *book*, so no NP expansions are considered.
Problem: Inefficiency of recomputing subresults

Two example sentences and their potential analysis:

(1) He [gave [the young cat] [to Bill]].
(2) He [gave [the young cat] [some milk]].

The corresponding grammar rules:

• $VP \rightarrow V_{ditrans} \ NP \ PP_{to}$
• $VP \rightarrow V_{ditrans} \ NP \ NP$

Regardless of the final sentence analysis, the ditransitive verb ($gave$) and its first object NP ($the young cat$) will have the same analysis

\Rightarrow No need to analyze it twice
Solution: Chart Parsing (Memoization)

- Store intermediate results:

 a) completely analyzed constituents:
 well-formed substring table or (passive) chart

 b) partial and complete analyses:
 (active) chart

- In other words, instead of recalculating that *the young cat* is an NP, we’ll store that information

 - Dynamic programming: never go backwards

- All intermediate results need to be stored for completeness.

- All possible solutions are explored in parallel.
CFG Parsing: The Cocke Younger Kasami Algorithm

- Grammar has to be in Chomsky Normal Form (CNF), only
 - RHS with a single terminal: $A \rightarrow a$
 - RHS with two non-terminals: $A \rightarrow BC$
 - no ϵ rules ($A \rightarrow \epsilon$)

- A representation of the string showing positions and word indices:

 $\cdot_0 w_1 \cdot_1 w_2 \cdot_2 w_3 \cdot_3 w_4 \cdot_4 w_5 \cdot_5 w_6 \cdot_6$

For example: \cdot_0 the \cdot_1 young \cdot_2 boy \cdot_3 saw \cdot_4 the \cdot_5 dragon \cdot_6
The well-formed substring table (= passive chart)

- The well-formed substring table, henceforth (passive) chart, for a string of length n is an $n \times n$ matrix.

- The field (i, j) of the chart encodes the set of all categories of constituents that start at position i and end at position j, i.e.

$$\text{chart}(i, j) = \{ A \mid A \Rightarrow^* w_{i+1} \ldots w_j \}$$

- The matrix is triangular since no constituent ends before it starts.
Coverage Represented in the Chart

An input sentence with 6 words:

\[0 \cdot w_1 \cdot 1 \cdot w_2 \cdot 2 \cdot w_3 \cdot 3 \cdot w_4 \cdot 4 \cdot w_5 \cdot 5 \cdot w_6 \cdot 6 \]

Coverage represented in the chart:

<table>
<thead>
<tr>
<th>FROM:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0–1</td>
<td>0–2</td>
<td>0–3</td>
<td>0–4</td>
<td>0–5</td>
<td>0–6</td>
</tr>
<tr>
<td>1</td>
<td>1–2</td>
<td>1–3</td>
<td>1–4</td>
<td>1–5</td>
<td>1–6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2–3</td>
<td>2–4</td>
<td>2–5</td>
<td>2–6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3–4</td>
<td>3–5</td>
<td>3–6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>4–5</td>
<td>4–6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5–6</td>
<td></td>
</tr>
</tbody>
</table>
Example for Coverage Represented in Chart

Example sentence:

· 0 the · 1 young · 2 boy · 3 saw · 4 the · 5 dragon · 6

Coverage represented in chart:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>the</td>
<td>the young</td>
<td>the young boy</td>
<td>the young boy saw</td>
<td>the young boy saw the dragon</td>
<td>the young boy saw the dragon</td>
</tr>
<tr>
<td>1</td>
<td>young</td>
<td>young boy</td>
<td>young boy saw</td>
<td>young boy saw the</td>
<td>young boy saw the dragon</td>
<td>young boy saw the dragon</td>
</tr>
<tr>
<td>2</td>
<td>boy</td>
<td>boy saw</td>
<td>boy saw the</td>
<td>boy saw the</td>
<td>boy saw the dragon</td>
<td>boy saw the dragon</td>
</tr>
<tr>
<td>3</td>
<td>saw</td>
<td>saw the</td>
<td>the</td>
<td>the</td>
<td>saw the dragon</td>
<td>saw the dragon</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>the</td>
<td>the</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dragon</td>
<td>dragon</td>
</tr>
</tbody>
</table>
Parsing with a Passive Chart

- The CKY algorithm is used, which:
 - explores all analyses in parallel,
 - in a bottom-up fashion, &
 - stores complete subresults

- The reason this algorithm is used is to:
 - add top-down guidance (to only use rules derivable from start-symbol), but avoid left-recursion problem of top-down parsing
 - store partial analyses
An Example for a Filled-in Chart

Input sentence:
· the · young · boy · saw · the · dragon ·

Chart:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{Det}</td>
<td>{}</td>
<td>{NP}</td>
<td>{}</td>
<td>{}</td>
<td>{S}</td>
</tr>
<tr>
<td>1</td>
<td>{Adj}</td>
<td>{N}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
</tr>
<tr>
<td>2</td>
<td>{N}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
</tr>
<tr>
<td>3</td>
<td>{}</td>
<td>{V, N}</td>
<td>{}</td>
<td>{}</td>
<td>{VP}</td>
<td>{}</td>
</tr>
<tr>
<td>4</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>{Det}</td>
<td>{NP}</td>
<td>{}</td>
</tr>
<tr>
<td>5</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>{N}</td>
</tr>
</tbody>
</table>
Filling in the Chart

- We build all constituents that end at a certain point before we build constituents that end at a later point.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>14</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>8</td>
<td>13</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>12</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>11</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

for $j := 1$ to length(string)

\textbf{lexical_chart_fill}(j - 1, j)

for $i := j - 2$ down to 0

\textbf{syntactic_chart_fill}(i, j)
lexical_chart_fill(j-1,j)

- Idea: Lexical lookup. Fill the field \((j - 1, j)\) in the chart with the preterminal category dominating word \(j\).

- Realized as:

\[
\text{chart}(j - 1, j) := \{ X \mid X \rightarrow \text{word}_j \in P \}
\]
syntactic_chart_fill(i,j)

- Idea: Perform all reduction steps using syntactic rules such that the reduced symbol covers the string from i to j.

- Realized as: $\text{chart}(i, j) = \begin{cases} A & i < k < j, \\
A \rightarrow BC \in P, & B \in \text{chart}(i, k), \\
C \in \text{chart}(k, j) \end{cases}$

- Explicit loops over every possible value of k and every context free rule:

 $\text{chart}(i, j) := \{\}.$

 for $k := i + 1$ to $j - 1$

 for every $A \rightarrow BC \in P$

 if $B \in \text{chart}(i, k)$ and $C \in \text{chart}(k, j)$ then

 $\text{chart}(i, j) := \text{chart}(i, j) \cup \{A\}.$
The Complete CYK Algorithm

Input: start category S and input string

\[
n := \text{length(string)}
\]

for $j := 1$ to n

\[
\text{chart}(j-1, j) := \{X \mid X \to \text{word}_j \in P\}
\]

for $i := j-2$ down to 0

\[
\text{chart}(i, j) := \{
\}
\]

for $k := i+1$ to $j-1$

for every $A \rightarrow BC \in P$

if $B \in \text{chart}(i, k)$ and $C \in \text{chart}(k, j)$ then

\[
\text{chart}(i, j) := \text{chart}(i, j) \cup \{A\}
\]

Output: if $S \in \text{chart}(0, n)$ then accept else reject
How memoization helps

If we look back to the chart for the sentence *the young boy saw the dragon*:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>{Det}</td>
<td>{}</td>
<td>{NP}</td>
<td>{}</td>
<td>{}</td>
<td>{S}</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>{Adj}</td>
<td>{N}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>{N}</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>{V, N}</td>
<td>{}</td>
<td>{VP}</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>{Det}</td>
<td>{NP}</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>{N}</td>
</tr>
</tbody>
</table>

- At cell (3,6), a VP is built by combining the V at (3,4) with the NP at (4,6), based on the rule \(VP \rightarrow V \ NP \)

- Regardless of further processing, that VP is never rebuilt
From CYK to Earley

• CKY algorithm:
 – explores all analyses in parallel
 – bottom-up
 – stores complete subresults

• desiderata:
 – add top-down guidance (to only use rules derivable from start-symbol), but avoid
 left-recursion problem of top-down parsing
 – store partial analyses (useful for rules right-hand sides longer than 2)

• Idea: also store partial results, so that the chart contains
 – passive items: complete results
 – active items: partial results
Representing active chart items

- well-formed substring entry:
 \(\text{chart}(i,j,A) \): from \(i \) to \(j \) there is a constituent of category \(A \)

- More elaborate data structure needed to store partial results:
 - rule considered + how far processing has succeeded
 - dotted rule:
 \[i[A \rightarrow \alpha \bullet_j \beta] \]

- active chart entry:
 \(\text{chart}(i,j,\text{state}(A,\beta)) \)
 A (incompletely) goes from \(i \) to \(j \) and can be completed by finding \(\beta \)
 Note that \(\alpha \) is not represented.
Dotted rule examples

• A dotted rule represents a state in processing a rule.

• Each dotted rule is a hypothesis:

<table>
<thead>
<tr>
<th>Rule</th>
<th>We found a vp if we still find</th>
</tr>
</thead>
<tbody>
<tr>
<td>$vp \rightarrow \bullet v\text{-ditr} \ np \ pp\text{-to}$</td>
<td>a $v\text{-ditr}$, a np, and a $pp\text{-to}$</td>
</tr>
<tr>
<td>$vp \rightarrow v\text{-ditr} \bullet np \ pp\text{-to}$</td>
<td>a np and a $pp\text{-to}$</td>
</tr>
<tr>
<td>$vp \rightarrow v\text{-ditr} \ np \bullet pp\text{-to}$</td>
<td>a $pp\text{-to}$</td>
</tr>
<tr>
<td>$vp \rightarrow v\text{-ditr} \ np \ pp\text{-to} \bullet$</td>
<td>nothing</td>
</tr>
</tbody>
</table>

The first three are examples of **active items** (or **active edges**)

The last one is a **passive item/edge**.
The three actions in Earley’s algorithm

In $i[A \rightarrow \alpha \bullet_j B\beta]$ we call B the active constituent.

- **Prediction**: Search all rules realizing the active constituent.
- **Scanning**: Scan over each word in the input string.
- **Completion**: Combine an active edge with each passive edge covering its active constituent.

Success state: $0[start \rightarrow s \bullet_n]$
A closer look at the three actions

Prediction

Prediction: for each $i[A \rightarrow \alpha \bullet_j B \beta]$ in chart
for each $B \rightarrow \gamma$ in rules
add $j[B \rightarrow \bullet_j \gamma]$ to chart

Prediction is the task of saying we kinds of input we expect to see

• Add a rule to the chart saying that we have not seen γ, but when we do, it will form a B

• The rule covers no input, so it goes from j to j

Such rules provide the top-down aspect of the algorithm
A closer look at the three actions

Scanning

Scanning: let $w_1 \ldots w_j \ldots w_n$ be the input string
for each $i[A \rightarrow \alpha \bullet_{j-1} w_j \beta]$ in chart
add $i[A \rightarrow \alpha w_j \bullet_j \beta]$ to chart

Scanning reads in lexical items

- We add a dotted rule indicating that a word has been seen between $j-1$ and j
- Such a completed dotted rule can be used to complete other dotted rules

These rules provide the bottom-up component to the algorithm
A closer look at the three actions
Completion

Completion (fundamental rule of chart parsing):

for each \(i[A \rightarrow \alpha \bullet_k B \beta] \) and \(k[B \rightarrow \gamma \bullet_j] \) in chart
add \(i[A \rightarrow \alpha B \bullet_j \beta] \) to chart

Completion combines two rules in order to move the dot, i.e., indicate that something has been seen

• A rule covering B has been seen, so any rule A which refers to B in its RHS moves the dot

• Instead of spanning from \(i \) to \(k \), A now spans from \(i \) to \(j \), which is where B ended

Once the dot is moved, the rule will not be created again
Eliminating scanning

Scanning: for each $i[A \rightarrow \alpha \bullet_{j-1} w_j \beta]$ in chart
 add $i[A \rightarrow \alpha w_j \bullet_j \beta]$ to chart

Completion: for each $i[A \rightarrow \alpha \bullet_k B \beta]$ and $k[B \rightarrow \gamma \bullet_j]$ in chart
 add $i[A \rightarrow \alpha B \bullet_j \beta]$ to chart

Observation: Scanning = completion + words as passive edges. One can thus simplify scanning to adding a passive edge for each word:

 for each w_j in $w_1 \ldots w_n$
 add $j-1[w_j \rightarrow \bullet_j]$ to chart
Earley’s algorithm without scanning

General setup:
apply prediction and completion to every item added to chart

Start:
add $0[start \rightarrow \bullet_0 s]$ to chart
for each w_j in $w_1 \ldots w_n$
add $j-1[w_j \rightarrow \bullet_j]$ to chart

Success state: $0[start \rightarrow s \bullet_n]$
A tiny example grammar

Lexicon:

\[\begin{align*}
\text{vp} & \rightarrow \text{left} \\
\text{det} & \rightarrow \text{the} \\
\text{n} & \rightarrow \text{boy} \\
\text{n} & \rightarrow \text{girl}
\end{align*} \]

Syntactic rules:

\[\begin{align*}
\text{s} & \rightarrow \text{np vp} \\
\text{np} & \rightarrow \text{det n}
\end{align*} \]
An example run

start
predict from 1
predict from 2
predict from 3
scan "the"
complete 4 with 5
complete 3 with 6
predict from 7
predict from 7
scan "boy"
complete 8 with 10
complete 7 with 11
complete 2 with 12
predict from 13
scan "left"
complete 14 with 15
complete 13 with 16
complete 1 with 17

1. 0[start → •_0 s]
2. 0[s → •_0 np vp]
3. 0[np → •_0 det n]
4. 0[det → •_0 the]
5. 0[the → •_1]
6. 0[det → the •_1]
7. 0[np → det •_1 n]
8. 1[n → •_1 boy]
9. 1[n → •_1 girl]
10. 1[boy → •_2]
11. 1[n → boy •_2]
12. 0[np → det n •_2]
13. 0[s → np •_2 vp]
14. 2[vp → •_2 left]
15. 2[left → •_3]
16. 2[vp → left •_3]
17. 0[s → np vp •_3]
18. 0[start → s•_3]
Improving the efficiency of lexical access

- In the setup just described
 - words are stored as passive items so that
 - prediction is used for preterminal categories. The set of predicted words for a preterminal can be huge.

- If each word in the grammar is introduced by a preterminal rule $\text{cat} \rightarrow \text{word}$ one can add a **passive item for each preterminal category** which can dominate the word instead of for the word itself.

- What needs to be done:
 - syntactically distinguish syntactic rules from rules with preterminals on the left-hand side, i.e. lexical entries.
 - modify scanning to take lexical entries into account.
Earley parsing

The Earley algorithm is efficient, running in polynomial time.

- Technically, however, it is a recognizer, not a parser

To make it a parser, each state needs to be augmented with a pointer to the states that its rule covers

- For example, a VP would point to the state where its V was completed and the state where its NP was completed

- This is also true of the CKY algorithm we saw earlier: pointers need to be added to make it a parser