The Computer and Natural Language (Ling 445/515)
Machine Translation

Markus Dickinson

Department of Linguistics, Indiana University
Autumn 2011
What is Machine Translation?

Translation is the process of:

- moving texts from one (human) language (**source language**) to another (**target language**),
- in a way that preserves meaning.

Machine translation (MT) automates (part of) the process:

- Fully automatic translation
- Computer-aided (human) translation
What is MT good for?

- When you need the gist of something and there are no human translators around:
 - translating e-mails & webpages
 - obtaining information from sources in multiple languages (e.g., search engines)

- If you have a limited vocabulary and a small range of sentence types:
 - translating weather reports
 - translating technical manuals
 - translating terms in scientific meetings

- If you want your human translators to focus on interesting/difficult sentences while avoiding lookup of unknown words and translation of mundane sentences.
Translation is of immediate importance for multilingual countries (Canada, India, Switzerland, . . .), international institutions (United Nations, International Monetary Fund, World Trade Organization, . . .), multinational or exporting companies.

The European Union has 23 official languages. All federal laws and other documents have to be translated into all languages.
Example translations
The simple case

- It will help to look at a few examples of real translation before talking about how a machine does it.
- Take the simple Spanish sentence and its English translation below:

 (1) (Yo) hablo español.
 I speak\textsubscript{1st,sg} Spanish
 ‘I speak Spanish.’

- Words in this example pretty much translate one-for-one
- But we have to make sure \textit{hablo} matches with \textit{Yo}, i.e.,
 that the subject agrees with the form of the verb.
Example translations
A slightly more complex case

The order and number of words can differ:

(2) a. Tu hablas español?
 You speak\textsubscript{2nd,sg} Spanish
 ‘Do you speak Spanish?’

 b. Hablas español?
 Speak\textsubscript{2nd,sg} Spanish
 ‘Do you speak Spanish?’
What goes into a translation

Some things to note about these examples and thus what we might need to know to translate:

- Words have to be translated → dictionaries
- Words are grouped into meaningful units → syntax
- Word order can differ from language to language
- The forms of words within a sentence are systematic, e.g., verbs have to be conjugated, etc.
Different approaches to MT

We’ll look at some basic approaches to MT:

- Systems based on linguistic knowledge
 - Direct transfer systems
 - Interlinguas
- Machine learning approaches, i.e., statistical machine translation (SMT)
 - SMT is by far the most popular form of MT right now
Dictionaries

An MT **dictionary** differs from a “paper” dictionary:

- must be computer-usable (electronic form, indexed)
- needs to be able to handle various word inflections
- can contain (syntactic and semantic) restrictions that a word places on other words
 - e.g., subcategorization information: *give* needs a giver, a person given to, and an object that is given
 - e.g., selectional restrictions: if X *eats*, X must be animate
- contains frequency information
 - for SMT, may be the only piece of additional information
Linguistic knowledge-based systems

- Linguistic knowledge-based systems include knowledge of both the source and the target languages.
- We will look at direct transfer systems and then the more specific instance of interlinguas.
 - Direct transfer systems
 - Interlinguas
Direct transfer systems

A direct transfer systems consists of:

- A source language grammar
- A target language grammar
- Rules relating source language underlying representation (UR) to target language UR
 - A direct transfer system has a **transfer component** which relates a source language representation with a target language representation.
 - This can also be called a **comparative grammar**.

We’ll walk through the following French to English example:

(3) Londres plaît à Sam.
London is pleasing to Sam

‘Sam likes London.’
Steps in a transfer system

1. source language grammar analyzes the input and puts it into an **underlying representation** (UR).

 \[\text{Londres plaît à Sam} \rightarrow \text{Londres plaire Sam} \]
 (source UR)

2. The transfer component relates this source language UR (French UR) to a target language UR (English UR).

 \[
 \begin{align*}
 \text{French UR} & \quad \text{English UR} \\
 X \text{ plaire } Y & \leftrightarrow \text{Eng}(Y) \text{ like Eng}(X) \\
 \text{(where Eng}(X) \text{ means the English translation of } X)
 \end{align*}
 \]

 \[\text{Londres plaire Sam} \text{ (source UR)} \rightarrow \text{Sam like London} \]
 (target UR)

3. target language grammar translates the target language UR into an actual target language sentence.

 \[\text{Sam like London} \rightarrow \text{Sam likes London} \]
Notes on transfer systems

- The transfer mechanism is in theory reversible; e.g., the *plaire* rule works in both directions
 - Not clear if this is desirable: e.g., Dutch *aanvangen* should be translated into English as *begin*, but *begin* should be translated as *beginnen*.
- Because we have a separate target language grammar, we are able to ensure that the rules of English apply; *like* → *likes*.
Levels of abstraction

- There are differing levels of abstraction at which transfer can take place. So far we have looked at URs that represent only word information.
- We can do a full syntactic analysis, which helps us to know how the words in a sentence relate.
- Or we can do only a partial syntactic analysis, such as representing the dependencies between words.
Czech-English example

(4) Kaufman & Broad odmítla institucionální investory
Kaufman & Broad declined institutional investors
jmenovat.
to name/identify

‘Kaufman & Broad refused to name the institutional investors.’

Example taken from Čmejrek, Cuřín, and Havelka (2003).

- They find the base forms of words (e.g., obmidout ’to decline’ instead of odmítla ’declined’)
- They find which words depend on which other words and represent this in a tree (e.g., the noun investory depends on the verb jmenovat)
- This dependency tree is then converted to English (comparative grammar) and re-ordered as appropriate.
Computers and Language
Machine Translation

Introduction
Examples for Translations
Background:
Dictionaries
Linguistic knowledge based systems
Direct transfer systems
Interlingua-based systems
Machine learning based systems
Alignment
Statistical Modeling
Phrase-Based Translation
What makes MT hard?
Evaluating MT systems
References

Dependency tree for Czech-English example

Kaufman
Broad
&
&

camble
name
investor
institucionaini
instituional

Kaufman Broad
Interlinguas

- Ideally, we could use an **interlingua** = a language-independent representation of meaning.

- **Benefit:** To add new languages to your MT system, you merely have to provide mapping rules between your language and the interlingua, and then you can translate into any other language in your system.
The translation triangle

Interlingua

Source

Target

Transfer System

Size of comparative grammar between languages

Depth of Analysis

Background:
Dictionaries
Linguistic knowledge based systems
Direct transfer systems
Machine learning based systems
Alignment
Statistical Modeling
Phrase-Based Translation
What makes MT hard?
Evaluating MT systems
References
Interlingual problems

- What exactly should be represented in the interlingua?
 - e.g., English *corner* = Spanish *rincón* = ’inside corner’ or *esquina* = ’outside corner’

- A fine-grained interlingua can require extra (unnecessary) work:
 - e.g., Japanese distinguishes *older brother* from *younger brother*, so we have to disambiguate English *brother* to put it into the interlingua.
 - Then, if we translate into French, we have to ignore the disambiguation and simply translate it as *frère*, which simply means ’brother’.
Machine learning

Instead of trying to tell the MT system how we’re going to translate, we might try a **machine learning** approach.

- We can look at how often a source language word is translated as a target language word, i.e., the **frequency** of a given translation, and choose the most frequent translation.

- But how can we tell what a word is being translated as? There are two different cases:
 - We are told what each word is translated as: **text alignment**
 - We are not told what each word is translated as: use a **bag of words**

We can also attempt to learn alignments, as a part of the process, as we will see.
Sentence alignment

▶ **sentence alignment** = determine which source language sentences align with which target language ones (what we assumed in the bag of words example).

▶ Intuitively easy, but can be difficult in practice since different languages have different punctuation conventions.
Word alignment

- **word alignment** = determine which source language words align with which target language ones
 - Much harder than sentence alignment to do automatically.
 - But if it has already been done for us, it gives us good information about what a word’s translation equivalent is.
Different word alignments

- One word can map to one word or to multiple words. Likewise, sometimes it is best for multiple words to align with multiple words.

- English-Russian examples:
 - one-to-one: *khorosho = well*
 - one-to-many: *kniga = the book*
 - many-to-one: *to take a walk = gulyat’*
 - many-to-many: *at least = khotya by (’although if/would’)*
Calculating probabilities

- With word alignments, it is relatively easy to calculate probabilities.

- e.g., What is the probability that run translates as correr in Spanish?

 1. Count up how many times run appears in the English part of your bi-text. e.g., 500 times
 2. Out of all those times, count up how many times it was translated as (i.e., aligns with) correr. e.g., 275 (out of 500) times.
 3. Divide to get a probability: 275/500 = 0.55, or 55%

- Word alignment gives us some frequency numbers, which we can use to align new cases, using other information, too (e.g., contextual information)
Word alignment difficulties

- Sometimes it is not clear that word alignment is possible.

 (5) Ivan aspirant.
 Ivan graduate student
 ‘Ivan is a graduate student.’

- What does *is* align with?

- In cases like this, a word can be mapped to a “null” element in the other language.
The “bag of words” method

- What if we’re not given word alignments?
- How can we tell which English words are translated as which German words if we are only given an English text and a corresponding German text?
 - We can treat each sentence as a **bag of words** = unordered collection of words.
 - If word A appears in a sentence, then we will record all of the words in the corresponding sentence in the other language as appearing with it.
Example for bag of words method

- English *He speaks Russian well.*
- Russian *On khorosho govorit po-russki.*

<table>
<thead>
<tr>
<th>Eng</th>
<th>Rus</th>
<th>Eng</th>
<th>Rus</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>On</td>
<td>speaks</td>
<td>On</td>
</tr>
<tr>
<td>He</td>
<td>khorosho</td>
<td>speaks</td>
<td>khorosho</td>
</tr>
<tr>
<td>He</td>
<td>govorit</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>He</td>
<td>po-russki</td>
<td>well</td>
<td>po-russki</td>
</tr>
</tbody>
</table>

The idea is that, over thousands, or even millions, of sentences, *He* will tend to appear more often with *On*, *speaks* will appear with *govorit*, and so on.
Example for bag of words method
Calculating probabilities: sentence 1

So, for *He* in *He speaks Russian well/On khorosho govorit po-russki*, we do the following:

1. Count up the number of Russian words: 4.
2. Assign each word equal probability of translation: $1/4 = 0/25$, or 25%.
Example for bag of words method

Calculating probabilities: sentence 2

If we also have *He is nice./On simpatich’nyi.*, then for *He*, we do the following:

1. Count up the number of possible translation words: 4 from the first sentence, 2 from the second = 6 total.
 - Note that we are NOT counting the number of English words: we count the number of *possible translations*

2. Count up the number of times *On* is the translation = 2 times out of 6 = 1/3 = 0.33, or 33%.

All other words have the probability 1/6 = 0.17, or 17%, so *On* is the best translation for *He*.
Probabilistic models are generally more sophisticated, treating the problem as the source language generating the target and taking into account probabilities such as:

- $n(\#|\text{word}) = \text{probability of the number of words in the target language that the source word generates}$
- $p\text{-null} = \text{probability of a null word appearing}$
- $t(\text{tword}|\text{sword}) = \text{probability of a target word, given the source word (i.e., what we’ve seen so far)}$
- $d(\text{tposition}|\text{sposition}) = \text{probability of a target word appearing in position } t\text{position, given the source position } s\text{position}$

But we need alignments to estimate these parameters.
A Generative Story (IBM Models)

Beyond Bags of Words

... la maison ... la maison blue ... la fleur ...

... the house ... the blue house ... the flower ...

A chicken-and-egg problem

- If we had the word alignments, we could estimate the parameters of our generative story.
- If we had the parameters, we could estimate the alignments.
The Expectation Maximization (EM) algorithm works forwards and backwards to estimate the probabilities:

EM in a nutshell

1. initialize model parameters (e.g. uniform)
2. (re-)assign probabilities to the missing data
3. (re-)estimate model parameters from completed data *(weighted counts)*
4. iterate, i.e., repeat steps 2&3 until you hit some stopping point
Initial Step

... la maison ... la maison blue ... la fleur ...

... the house ... the blue house ... the flower ...

- All connections equally likely.
After 1st Iteration

... la maison ... la maison blue ... la fleur ...

... the house ... the blue house ... the flower ...

- Connections between e.g. *la* and *the* are more likely.
After Another Iteration

... la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

- Connections between e.g. *fleur* and *flower* are more likely (pigeon hole principle).
Convergence

... la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

\[
p(\text{la} | \text{the}) = 0.453 \\
p(\text{le} | \text{the}) = 0.334 \\
p(\text{maison} | \text{house}) = 0.876 \\
p(\text{bleu} | \text{blue}) = 0.563
\]
Phrase-Based Translation Overview

But this word-based translation doesn’t account for many-to-many mappings between languages

- Foreign “phrases” are translated into English.
- Phrases may be reordered.

Current models allow for many-to-one mappings → we can use those to induce many-to-many mappings
Intersecting Alignments

english to spanish

spanish to english

intersection

What makes MT hard?

Evaluating MT systems

References
Growing Alignments

- Heuristically add alignments along the diagonal (Och & Ney, *Computational Linguistics*, 2003)
Induced Phrases

\[(\text{Maria, Mary}), (\text{no, did not}), (\text{slap, daba una bofetada}), (\text{a la, the}), (\text{bruja, witch}), (\text{verde, green})\]

We can now use these phrase pairs as the units of our probability model.
Advantages of Phrase-Based Translation

- Many-to-many translation can handle non-compositional phrases.
- Use of local context.
- The more data, the longer the phrases that can be learned.
What makes MT hard?

We’ve seen how MT systems can work, but MT is a very difficult task because languages are vastly different. They differ:

- Lexically: In the words they use
- Syntactically: In the constructions they allow
- Semantically: In the way meanings work
- Pragmatically: In what readers take from a sentence.

In addition, there is a good deal of real-world knowledge that goes into a translation.
Lexical ambiguity

Words can be **lexically ambiguous** = have multiple meanings.

- *bank* can be a financial institution or a place along a river.
- *can* can be a cylindrical object, as well as the act of putting something into that cylinder (e.g., *John cans tuna*.), as well as being a word like *must, might*, or *should*.
Semantic relationships

Often we find (rough) **synonyms** between two languages:

- English *book* = Russian *kniga*
- English *music* = Spanish *música*

But words don’t always line up exactly between languages.

- English **hypernyms** = words that are more general in English than in their counterparts in other languages
 - English *know* is rendered by the French *savoir* (‘to know a fact’) and *connaitre* (‘to know a thing’)
 - English *library* is German *Bücherei* if it is open to the public, but *Bibliothek* if it is intended for scholarly work.
- English **hyponyms** = words that are more specific in English than in their foreign language counterparts.
 - The German word *berg* can mean either *hill* or *mountain* in English.
 - The Russian word *ruka* can mean either *hand* or *arm*.
Semantic overlap

And then there’s just fuzziness, as in the following English and French correspondences (Jurafsky & Martin 2000, Figure 21.2)

- *leg* = *etape* (journey), *jambe* (human), *pied* (chair), *patte* (animal)
- *foot* = *pied* (human), *patte* (bird)
- *paw* = *patte* (animal)
Venn diagram of semantic overlap

Computers and Language
Machine Translation

Introduction
Examples for Translations
Background:
Dictionaries
Linguistic knowledge based systems
Direct transfer systems
Interlingua-based systems
Machine learning based systems
Alignment
Statistical Modeling
Phrase-Based Translation

What makes MT hard?

Evaluating MT systems
References
Semantic non-compositionality

Some verbs carry little meaning, so-called **light verbs**

- French *faire une promenade* is literally ’make a walk,’ but it has the meaning of the English *take a walk*
- Dutch *een poging doen* ’do an attempt’ means the same as the English *make an attempt*

And we often face **idioms** = expressions whose meaning is not made up of the meanings of the individual words.

- e.g., English *kick the bucket*
 - approximately equivalent to the French *casser sa pipe* (’break his/her pipe’)
 - but we might want to translate it as *mourir* (’die’)
 - and we want to treat it differently than *kick the table*
Idiosyncratic differences

Some words do not exist in a language and have to be translated with a more complex phrase: **lexical gap** or **lexical hole**.

- French *gratiner* means something like ’to cook with a cheese coating’
- Hebrew *stam* means something like ’I’m just kidding’ or ’Nothing special.’

There are also idiosyncratic **collocations** among languages, e.g.:

- English *heavy smoker*
- French *grand fumeur* (’large smoker’)
- German *starker Raucher* (’strong smoker’)
Evaluating quality

Two main components in evaluating quality:

- **Intelligibility** = how understandable the output is
- **Accuracy** = how faithful the output is to the input
 - A common (though problematic) evaluation metric is the BLEU metric, based on n-gram comparisons

And some methods we can use to gauge these properties:

- **Error analysis** = how many errors we have to sort through and how they affect intelligibility & accuracy
- **Test suite** = a set of sentences that our system should be able to handle
Intelligibility

Intelligibility Scale (from Arnold et al., 1994)

1. The sentence is perfectly clear and intelligible. It is grammatical and reads like ordinary text.

2. The sentence is generally clear and intelligible. Despite some inaccuracies or infelicities of the sentence, one can understand (almost) immediately what it means.

3. The general idea of the sentence is intelligible only after considerable study. The sentence contains grammatical errors and/or poor word choices.

4. The sentence is unintelligible. Studying the meaning of the sentence is hopeless; even allowing for context, one feels that guessing would be too unreliable.
Further reading

Some of the examples are adapted from the following books:
