Conversions for heterogeneous treebank parsing

L715: Seminar on: Data manipulation for parser improvement
Dept. of Linguistics, Indiana University
Fall 2011
Introduction

We are going to focus now on conversions for the purposes of creating more parsing data

- Fully automatic methods are preferable to rule-based ones
 - Allow for new schemes (i.e., be even more robust than last time)
- We will start with DS ↔ PS issues, but the issue is more general
 - Convert a source annotation into a target annotation
 - different representation types, different conventions, different languages
 - i.e., find a common annotation scheme to parse with
Exploiting Heterogeneous Treebanks for Parsing

Niu et al. (2009)

Heterogeneous treebank contains multiple treebanks in different annotation schemes (grammar formalisms)

- To parse in target formalism, we have to solve: source treebank \mapsto target treebank
- This is desirable, as it provides more labeled data
Two-step solution

1. Convert grammar formalism of source to target
2. Refine converted trees & use them as additional training data, for a target grammar parser
 ▶ This can be iterative, retraining on converted data

Approach taken here:

▶ DS-to-PS conversion, to better train a PS parser
▶ Use existing n-best parser to generate conversion candidates
 ▶ select the parse most consistent with source tree as the converted tree

Other avenues which are pursued:

▶ pruning low-quality trees
▶ interpolating scores from source & target grammars
▶ corpus weighting
Limitations of previous approaches

- “For each head-dependent pair, only one locally optimal conversion was kept during tree-building process”
 - Potentially ignores globally optimal conversions
- Heuristic rules are used to do the conversion, when multiple possible conversions exist
 - Usually have to be hand-crafted
Grammar formalism conversion

Notation:

- $C_{DS} =$ source treebank annotated with dependency structure (DS)
- $C_{PS} =$ target treebank annotated with phrase structure (PS)

Goal: convert C_{DS} to C_{PS}

Steps:

1. Train a constituency parser on C_{PS} (target)
2. Generate n-best parsers for C_{DS} (source)
3. Convert n parses ($x_{i,t}$) to dependency trees ($x_{i,t}^{DS}$) (more on this in a moment)
4. Compare converted dependency trees ($x_{i,t}^{DS}$) to gold standard tree (y_{i}), obtaining $Score(x_{i,t})$
 - measured by parseval F-score
5. Determine the PS tree by taking the one which corresponds to the maximum $Score(x_{i,t})$
Grammar formalism conversion (2)

The method as outlined above can be repeated

- Converted trees can be used as additional data to retrain the n-best parser
- Development data ($C_{PS,dev}$) is used to determine when iterations are no longer helping

In general, once the conversion is done, heterogeneous parsing now is the same as homogeneous parsing

- i.e., treebanks are in the same format
Grammar formalism conversion (3)

The conversion from DS to PS involves a step of conversion between PS to DS, in order to make the n-best (PS) trees comparable to the gold (DS) tree

- The method relies upon there being some way to objectively compare the set of parsed trees with the gold ones in the treebank
- If it were a PS-to-PS conversion, this would have to be done differently

Their method is relatively simple:

1. Find the head of each constituent, using a head table
2. Make the head of each non-head child depend on the head
n-best parser may fail on some cases, i.e., giver poor-quality converted trees

- **Instance pruning**: remove converted trees with low unlabeled f-scores
- Then, do parser training
Target grammar parsing
Score interpolation

Unlabeled dependency F-score measures quality from the perspective of the source (DS) grammar

▶ What about from the perspective of the target grammar?
▶ After all, there can be different ways of viewing grammar that need to be reconciled towards the target
 ▶ “conflicts of syntactic structure definition”
 ▶ e.g., preposition or noun as the head? (see figure 1)

The score is thus modified to take parser probability/confidence into account:

\[
\hat{\text{Score}}(x_{i,t}) = \lambda \text{Prob}(x_{i,t}) + (1 - \lambda)\text{Score}(x_{i,t})
\]
Corpus weighting

One other issue to be determined: if corpora are of different sizes, how are they balanced as parser training data?

- **Corpus weighting**: reduce the weight of the larger corpus (in this case C_{DS}) when training
- This may also reduce the influence of potentially corrupt trees
Evaluation on WSJ

Their results in tables 2 & 3 show improvement

► The measurements correspond to accuracy of recovering the original PS trees (not parsing accuracy)
Used CDT and CTB, in order to parse in CTB phrase-structure style

- Corpus weighting: tried increasing the weight of CTB in merging: optimal value = 10
- Both generative and reranking parser show improvements over baseline (table 5)
 - e.g., 83.3% → 83.8%
Instance pruning was done on the development set

- Result: it hurt to remove any converted trees
- Perhaps: even imperfect parses provide some useful syntactic information
Score interpolation

Used $\hat{\text{Score}}(x_{i,t})$ to replace $\text{Score}(x_{i,t})$

\begin{equation}
\hat{\text{Score}}(x_{i,t}) = \lambda \text{Prob}(x_{i,t}) + (1 - \lambda) \text{Score}(x_{i,t})
\end{equation}

- λ was tuned on the development set to be 0.4
- average index of 200-best trees increased to 2, i.e., higher up the list / more like target grammar

Results go up even further, e.g., 83.3% \rightarrow 83.8% \rightarrow 84.2%

Using unlabeled data as part of self-training helps even more (section 4.3)
Summary

Benefits of this approach:

- A parser generates globally-optimal syntactic structures
- No heuristic rules are needed
- Converted trees can retrain the parser and improve the conversion
The framing of the problem for Smith and Eisner (2009) is a bit more general

- Any source corpus annotation needs to be converted to a target annotation, in order to train a parser
 - Without such conversion, adding source training data will result in ill-formed analyses
- Multiple constructions need alteration → must learn a statistical model, not just write a few rules
The general task

Additionally, these are *different* sentences which are annotated, so we cannot directly learn transformations

- But we can automatically obtain pairs of trees
- Train parser on source corpus, parse target, and learn from those pairings
 - Note that this is the opposite direction from Niu et al. (2009)
- Learn tree transformation model from those pairings to obtain the source corpus in the target style
Parser projection

Parser projection is a case of taking source annotation from one language and projecting it into a target language.

Assume these variables:

- \(w = \) target language; \(t = \) target annotation
- \(w' = \) source language; \(t' = \) source annotation
- \(a = \) alignment between languages

Goal of projection is to model \(p(t|w, w', t', a) \) (or, generatively, \(p(w, t, a|w', t') \))

Parser adaptation is a subset of this problem, where the alignment is trivial: a word maps to itself.
Form of the Model

Arbitrary graphs

Synchronous grammar modeling assumes that source & language trees have a direct correspondence

- e.g., “two nodes can be aligned only if their respective parents are also aligned”

Quasi-synchronous grammars: model the alignments as an *arbitrary graph*

- arbitrary links between the words of the two sentences
- permits non-synchronous & many-to-many alignments
 - “Local syntactic configurations tend to occur in each language”
 - “we might learn that parses are ‘mostly synchronous,’ but that there are some systematic cross-linguistic divergences”

GENERAL POINT: allow there to be divergences between trees, but learn the systematicity
Form of the Model

Scores & features

Score of a given tuple:

\[(3) \quad s(t, t', a, w, w') = \sum_i w_i f_i (t, w) + \sum_j w_j g_j (t, t', a, w, w')\]

- **target features** \(f\): based only on target words and dependencies
 - features of an edge-factored dependency parser (e.g., POS of potential relation)
- **alignment features** \(g\)
 - features for \(x \rightarrow y\) (target) consider relationship between \(x'\) and \(y'\)
 - e.g., features for monotonic projection, head-swapping, various configurations (e.g., sibling)
Adaptation

Training done with both gold and noisy trees, to gauge the effect of parser noise

- Use MSTParser to train on source & parse a (small) amount of target data
- Train edge-factored parser with QG features on target data

Source & Target are in different conditions (preposition-as-head, coordination differences):

- Results in table 1 show that even with a small amount of trees, substantial gain can be made

Results for cross-lingual projection & adaptation also show improvement (section 6)