We will be talking about errors made by learners in a second language acquisition context. Language Learners often make non-native-like mistakes when constructing sentences:

- We arrived at the station.
- There is the garden in my house.
- I eat rice, nikujaga and salada yesterday.

Grammatical error detection entails trying to find these mistakes automatically.

CALL: Computer Assisted Language Learning
- Using computers and media in language learning and teaching
- e.g., Rosetta Stone, eLanguage
- Exercises are typically very simple in design, and offer little feedback

ICALL: Intelligent Computer Assisted Language Learning
- Utilize computational linguistics tools, such as POS tagging & parsing along with statistical language modeling strategies (e.g., n-grams)
 - These tools often need to be altered to expect and diagnose errors, or at least handle learner data better
 - We can also build software for specific kinds of errors.
 (today’s discussion)
- Focus on precision; we don’t want to tell a learner that they’ve made a mistake when they haven’t!

Where Error Detection Fits In
(a bit of a review)

CALL: Computer Assisted Language Learning
- Using computers and media in language learning and teaching
- e.g., Rosetta Stone, eLanguage
- Exercises are typically very simple in design, and offer little feedback

ICALL: Intelligent Computer Assisted Language Learning
- Utilize computational linguistics tools, such as POS tagging & parsing along with statistical language modeling strategies (e.g., n-grams)
 - These tools often need to be altered to expect and diagnose errors, or at least handle learner data better
 - We can also build software for specific kinds of errors.
 (today’s discussion)
- Focus on precision; we don’t want to tell a learner that they’ve made a mistake when they haven’t!

Language and Computers
LTS: Grammatical Error Detection

Based on slides from Ross Israel
Indiana University
Fall 2013

Learner Errors

Learners typically make different kinds of mistakes than native speakers.

- Content Word Choice
 - We need to deliver the merchandise on a daily *base/basis.
- Preposition Error
 - Our society is developing *in/at high speed.
- Determiner Error
 - There is *the/a garden in my house.
Choosing the correct preposition can be a tough task even for native speakers.

There has been concern over syncing phone contacts with Facebook. "As long as you are aware of who is in the group it can be a great privacy tool. If it gets out of hand it could give you a sense of false security." The roll out of new products comes reports that a syncing feature on the iPhone lets Facebook access contact data and share it on the site. "It's very possible that your private phone numbers - and those of your and their friends - are on the site," said Charles Arthur of the Guardian newspaper.

Machine learning is not as scary as it sounds!

There are a number of algorithms for classification that we could talk about:

- Maximum Entropy, Support Vector Machines, Memory Based Learning
- Each method requires different representations of information
- These slides are indicative of Memory Based Learning

TiMBL http://ilk.uvt.nl/timbl/ - Daelemans et al. (2007)
- Easy to install
- Easy to use
- Works well with language data

Let's consider a real-world example:

- The Task: We want to classify the weather as either good or bad.
 - We would want features like
 - temperature
 - sunny?
 - cloudy?
 - windy?
 - humidity level
 - rain/snow/none

References

Daelemans et al. (2007)
Then, we would build vectors for every measurement we take and label them to build training data:
- 75, yes, no, no, 70%, none, good
- 35, no, no, yes, 50%, none, bad
- 105, yes, no, no, 98%, rain, bad
- 68, yes, no, no, 75%, none, good

Now, when we give the classifier an unknown feature vector, we hope that it makes a wise decision
- 85, yes, no, no, 65%, none - classifier’s guess = good yay!
- 15, no, no, yes, 70%, snow - classifier’s guess = bad yay!
- 75, yes, no, yes, 70%, none - classifier’s guess = bad oops!

Korean language learning

This is based on joint work with Ross Israel & Sun-Hee Lee - Dickinson et al. (2010)

Ultimate goal: develop computational tools to assist learners of Korean

Korean has a number of features uncommon to Western languages:
- agglutinative morphology, rich system of case marking, relatively free word order
- One prominent area of difficulty for learners is that of post-positional particles

We want to build a machine learner to detect errors in particles

References

Korean particles: expected errors

Learners of Korean often misuse particles

(3) a. Sumi-nun chayk-i phiyohay-yo
 Sumi-TOP book-SBJ need-polite
 ‘Sumi needs a book.’

b. *Sumi-nun chayk-ul phiyohay-yo
 Sumi-TOP book-OBJ need-polite
 ‘Sumi needs a book.’

particle errors by learners of Korean can be categorized into 6 types:
- omission, replacement, addition, malformation, paraphrasing, and spacing

Machine Learning for Prepositions

Tetreault and Chodorow used a maximum entropy classifier to try to try to find preposition confusions and extraneous uses

They extracted 25 features including:
- words/POS tags in a 2 word window (+/-) around preposition
- the head verb and noun of the preceding VP and NP
- the head noun of the following NP
- John went to the store this morning.
 - word+POS bigrams: went_VBD, the_DET
 - head of previous VP = went
 - head of previous NP = John

Their system achieved 84% precision and 19% recall.

This might sound low, but keep in mind, we want to get the best possible precision, even if it means losing recall.

Background: Korean particles

Similar to English prepositions, but wider range of functions:
- Case marker/Semantic role markers:
 1) Sumi-ka John-eykey chayk-ul ilhke-yo
 Sumi-SBJ John-to book-OBJ read-polite
 ‘Sumi reads a book to John.’
 - Modifications (cf. prepositions): indicate specific lexical, syntactic, & semantic information between verb & noun

 2) Sumi-ka John-uy cip-eysu ku-lul
 Sumi-SBJ John-GEN house-LOC he-OBJ
 two sikan-ul kitaly-ess-ta.
 two hours-OBJ wait-PAST-END
 ‘Sumi waited for John for (the whole) two hours in his house.’

Machine learning paradigm

Parallel errors made by ESL learners for prepositions

We can base our system on the work by Tetreault and Chodorow, but we need to consider the differences between English and Korean

Some major differences in Korean:
- Particles are post-positional - they show up after a word instead of before it like in English
- Base word order is SOV
 - Need to look at following verb & following noun
 - Morphological composition of words is different
 - Agglutinative: stem+suffixes
For this experiment, we used TiMBL.

The feature vector is built on a five word window that includes the target word and two words (+/-) for context.

Each word is broken down into four features:
- Stem, affixes, stem_POS, affixes_POS
- Use trigram-rule based morphological tagger for Korean
- Include features for preceding and following nouns & verbs (roots only)

If the target word affixes contains a particle, it is removed and used as the class; otherwise the class is NONE.

In this study, we only predicted a particle’s presence (Y/N).

Our system was able to achieve around 84% precision and around 81% recall for this task.

The recall is higher here because the task is simpler than guessing which particle is best, we just try to guess if there should be a particle.

We have continued this work by adding the decision of which particle to use (too much for today ...)

References