Assignment 7

L545

Due Monday, April 8

1. Given the following feature structures (f, g, and h), answer the questions in (a) and (b):

f:	A B	1 [C	1	g:	B	$\begin{bmatrix} \mathbf{C} \\ y \end{bmatrix}$	$w\Big]\Bigg]$	h:	A B	z D	x
J		D	x		LD				Ľ	[

- (a) Give the feature structure which is the result of unifying each of the following:
 - i. $f \sqcup g$ ii. $f \sqcup h$ iii. $g \sqcup h$ iv. $(f \sqcup g) \sqcup h$
- (b) Does h subsume f? Why or why not?
- 2. (a) Draw a tree for the following sentence, using whatever features are necessary to make subcategorization and the long-distance dependency work out:
 - (1) Kim_i Dana believes Chris knows Sandy trusts $_{-i}$
 - (b) Describe how subcategorization is handled here.
 - (c) Describe how the trace is linked to Kim.
- 3. Here's a set of CFG rules that don't use feature structures:
 - $NP_{1sg} \rightarrow Det N_{1sg}$
 - $NP_{2sg} \rightarrow Det N_{2sg}$
 - $NP_{3sg} \rightarrow Det N_{3sg}$
 - $NP_{1pl} \rightarrow Det N_{1pl}$
 - $NP_{2pl} \rightarrow Det N_{2pl}$
 - $NP_{3pl} \rightarrow Det N_{3pl}$

And here's the same set using a feature structure notation:

NP	\rightarrow	Det N
<np person=""></np>	=	<n person=""></n>
<np number=""></np>	=	<n number=""></n>

Assume we're using the Earley parser, and we've already processed the input from position 0 to position 1, using the rule $\text{Det} \rightarrow the$.

- (a) Describe the current state of the Earley parser for the CFG rules without feature structures.
- (b) Describe the current state of the Earley parser for the CFG rules with feature structures.
- 4. Is the language $a^n b^2 a^n$ context-free? (Jurafsky and Martin, question 16.1)
- 5. Write a context-free grammar which recognizes even-length palindromes for the vocabulary $\{a, b\}$. That is, if x^R means 'the string x reversed,' you have to write a CFG for:

(2) $L = \{xx^R | x \in a, b*\}$

(adaptation of Jurafsky and Martin, question 16.4)