Computation and Linguistic Analysis

L545

Dept. of Linguistics, Indiana University
Spring 2013
Computation and Linguistic Analysis

From a practical perspective, computational linguistics provides the computational means to deal with spoken & written natural language:

▶ information extraction
▶ automatic translation
▶ natural language frontends to databases
▶ message generation
▶ spelling correction
▶ . . .

From a linguistic perspective, computational linguistics provides a possibility to:

▶ formalize & computationally test linguistic theories
▶ obtain example data relevant to linguistic theorizing
Why study CL?

In other words: Why are you here?

- Human language is interesting and challenging
 - NLP offers insight into properties of language
 - Combines different thinking: ling, CS, psych, math, etc.
- Language is the medium of the web
- CL analysis can help in communication
- The field is ambitious yet practical
 - e.g., Machine Translation (MT) is enormously difficult, but MT is useful (e.g., google’s “Translate this page”)
This course will focus more on so-called **symbolic CL**, or theory-driven computational linguistics

- When possible, we will connect the material to theoretical insights
- Although we’ll touch on some statistical methods, those are largely left for L645
General themes

This course will focus on what we need to know in order to represent language

▶ i.e., a focus on the underlying machinery more than the applications

▶ If you know how to use FSAs for morphology, you can learn how to use them for information extraction

Some themes that will recur this semester:

▶ Language is highly ambiguous

▶ Language processing must therefore be efficient

▶ Language can be treated as a formal system
In dealing with language this semester, we will emphasize the following three aspects:

- data structures
- formalisms for expressing grammars using these data structures
- (parsing) algorithms for processing with those grammars
What you need to know (1)

As we focus on theory, it helps to know about the following:

▶ Morphology: what are the components of words?
▶ Syntax: what are the relevant types of constructions in language?
 ▶ Arguments/Adjuncts, Control/raising, UDCs, Anaphora
▶ Semantics: how do word meanings compositionally form sentential meanings?

We’ll focus a lot on parsing this semester, so some basic knowledge of syntax will help

▶ If you lack this, let me know, and I’ll give you some readings ...
What you need to know (2)

We will treat language as a formal system, meaning:

- Language is a set of strings
- A language model recognizes or generates a set of strings

I want you to be comfortable with the idea of representing things formally (mathematically)

- We will deal with **set theory**
- We will also discuss this relatively soon