Composition

L545

Dept. of Linguistics, Indiana University
Spring 2013
Finite-state morphology

We have seen how to handle morphology with FSTs. Now, we want to step back & formally characterize morphological operations, focusing on composition:

- Composition handles concatenative morphology cleanly.
- Composition handles:
 - restrictions on the kinds of bases affixes can attach to
 - modifications on the bases affixes attach to

Material is adapted from Roark & Sproat (2007), Computational Approaches to Morphology and Syntax, esp. ch. 2
Example of Latin

Latin *scripserunt* is a combination of:

- stem *scrib-* (‘write’), which becomes *scrip-* before /s/
- perfect stem-forming -s- (for third conjugation verbs)
- (perfect) third person plural suffix *erunt*

Morphological analysis: relate word forms and detect structure of word forms

- structure: *scrib*+s_{\text{perfect}}+erunt_{\text{third,plural,active,indicative}}
 - We will use the function \mathcal{D} to represent this step
- relate to canonical form (lemmatization):
 - *scribo*_{\text{perfect,third,plural,active,indicative}}
 - We can use a function \mathcal{L} to obtain lemma from decomposed form (structure)
 - i.e., $\mathcal{D} \circ \mathcal{L}$
Syntagmatic variation

Simple concatenation

Given a stem A and a suffix β, we can create a form Γ with regular concatenation:

(1) $\Gamma = A \cdot \beta$

But what if instead we have a function β' which takes a string as input & outputs a string concatenated with β

(2) $\beta' = \Sigma^* [\epsilon : \beta]$

- $\Sigma = $ alphabet of symbols
- Σ^* is used here to specify a regular relation which maps strings into themselves

Now, we have:

(3) $\Gamma = A \circ \beta'$
Syntagmatic variation
Simple concatenation (2)

What are the advantages of treating concatenation as composition?

▶ especially since composition takes linear time, while concatenation is constant

Affixes often trigger some (phonological, spelling, or morphological) change affecting stem and/or affix

▶ Composition is needed for these cases

▶ Consider English plurals (Ψ), with phonological rule (/s/, /z/, /iz/) implemented by transducer T

\[(4) \quad \Psi = [S \cdot \sigma] \circ T\]

(5) Re-factor: $\Psi = S \circ [\Sigma^* [\epsilon : \sigma]] \circ T$

(6) Define: $\sigma' = [\Sigma^* [\epsilon : \sigma]] \circ T$

(7) New affix σ': $\Psi = S \circ \sigma'$
Syntagmatic variation
Prosodically Governed Concatenation

Some affixes have prosodic conditions, e.g., comparative
-er and superlative -est in English
 ▶ Generally speaking: only attach to monosyllabic or disyllabic stems
 ▶ The base/stem can be characterized as:

\[
B = C^* V C^* (V C^*)?
\]

▶ and the affix as:

\[
\kappa = B[\epsilon : er[+COMP]]
\]

▶ resulting in:

\[
\Gamma = A \circ \kappa
\]

▶ The only non-null \(\Gamma \) cases will be the ones where the base \(A \) matches \(B \)
Syntagmatic variation
Prosodically Governed Concatenation (2)

This will also capture more complicated templatic morphology, as in Yowlumne

- affix -inay requires the stem to reconfigure to CVC(C)

 \[
 (11) \ T_{cvc(c)} = CV[V : \epsilon]^* C[V : \epsilon]^* C?
 \]

 \[
 (12) \ \text{caw} \circ T_{cvc(c)} = \text{caw}
 \]

 \[
 (13) \ \text{diyi} \circ T_{cvc(c)} = \text{diyi}
 \]

 \[
 (14) \ \text{hiiyi} \circ T_{cvc(c)} = \text{hiyi}
 \]

- affix -?aa requires the template CVCVV(C)

 - more complicated, as it involves vowel copying

So, the morpheme -inay is represented as:

\[
(15) \ \kappa = T_{cvc(c)}[\epsilon : \text{inay} [+GER]]
\]
Syntagmatic variation

Subsegmental morphology

Subsegmental morphology: morphological alternants can be indicated by a change of a single phonological feature

- e.g., in Irish, genitive forms of nouns palatalize the final consonant
 - \(\text{bád} /d/ \text{ (NOM)} \mapsto \text{báid} /d^y/ \text{ (GEN)} \)
 - This is easily captured by defining a function \(\gamma \) which is a palatalization operation.

Genitive (\(\Gamma \)) is defined as a composition operation of \(\gamma \) applied to the nominative form (\(N \)):

\[
\Gamma = N \circ \gamma
\]
Syntagmatic variation
Extrametrical infixation

Consider infixes like \textit{-um-} in Philipino languages, e.g., Bontoc

- Ignores the onset sound of the word and prefixes to the remainder of the word
 - \textit{antj’\textbackslash ōak} ‘tall’, \textit{umantj’\textbackslash ōak} ‘I am getting taller’
 - \textit{k’\textbackslash āwisat} ‘good’, \textit{kum’\textbackslash āwisat} ‘I am getting better’

- Multiple infixes attach in this same spot, so it makes sense to break this down into 2 parts:
 1. Insert a marker (> for where the infix goes
 2. Convert the marker to the affix (e.g., \textit{-um-})
Syntagmatic variation

Extrametrical infixation (2)

1. Marker transducer M: insert $>$ at appropriate spot

\[(17) \quad M = C?[^\varepsilon :>]V\Sigma^*\]

2. Infixation transducer ι: map $>$ to $-um$-

So, now we precompose these 2 steps:

\[(18) \quad \mu = M \circ \iota\]

Meaning that a final word form is:

\[(19) \quad \Gamma = A \circ \mu\]
Syntagmatic variation
Root-and-pattern morphology

Arabic verbs (derivational morphology):

- consonantal roots
- prosodic shape given by a prosodic template
- particular vowels chosen by intended aspect (perfect/imperfect)

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Template</th>
<th>Verb stem</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>C₁aC₂aC₃</td>
<td>katab</td>
<td>‘wrote’</td>
</tr>
<tr>
<td>II</td>
<td>C₁aC₂C₂aC₃</td>
<td>kattab</td>
<td>‘caused to write’</td>
</tr>
<tr>
<td>III</td>
<td>C₁aaC₂aC₃</td>
<td>kaatab</td>
<td>‘corresponded’</td>
</tr>
<tr>
<td>VII</td>
<td>nC₁aC₂aC₃</td>
<td>nkatab</td>
<td>‘subscribed’</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Syntagmatic variation
Root-and-pattern morphology (2)

Templates:

(20) $\tau_1 = C_aC_aC$
(21) $\tau_{II} = C_aC_CaC$
(22) $\tau_{III} = C_aaCaC$
(23) $\tau_{VIII} = [\varepsilon: n]CaCaC$

\ldots

To obtain a transducer for all these templates:

(24) $\tau = \bigcup_{p \in \text{patterns}} \tau_p$
Syntagmatic variation
Root-and-pattern morphology (3)

Need a transducer to link the root to the templates:

- Must allow for optional vowels between consonants:
 \[\lambda_1 = C[\epsilon : V]^* C[\epsilon : V]^* C \]

- Must allow for doubling of center consonant (pattern II) ... need general rewrite rules:
 \[\lambda_2 : C_i \rightarrow C_i C_i \]
 \[\lambda = \lambda_1 \circ \lambda_2 \]

We can then derive forms:

\[\Gamma = P \circ \lambda \circ \tau \]

We can also compile \(\lambda \circ \tau \) into its own “pattern” machine
Paradigmatic variation

A *paradigm* is an array which each cell corresponds to a bundle of features

- characterizes how morphologically complex forms relate to one another
- e.g., Latin nouns, declension 1 (F)

<table>
<thead>
<tr>
<th>Case</th>
<th>Singular</th>
<th>Plural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominative</td>
<td>femina</td>
<td>feminae</td>
</tr>
<tr>
<td>Genitive</td>
<td>feminae</td>
<td>feminarum</td>
</tr>
<tr>
<td>Dative</td>
<td>feminae</td>
<td>feminis</td>
</tr>
<tr>
<td>Accusative</td>
<td>feminam</td>
<td>feminas</td>
</tr>
<tr>
<td>Ablative</td>
<td>femina</td>
<td>feminis</td>
</tr>
</tbody>
</table>

There are regularities which seem to argue for a first-class status of paradigms

- e.g., ablative & dative plurals
Paradigmatic variation
A Computational Characterization

1. Relate morphosyntactic features to abstract morphomic features (transducer α)
 - $\text{NEUT NOM } \cup \text{ ACC SG } \rightarrow \text{NEUTNASG}$
 - $\text{NEUT NOM } \cup \text{ ACC PL } \rightarrow \text{NEUTNAPL}$
 - $\text{NOM SG } \rightarrow \text{NOMSG}$
 - $\text{GENDER DAT PL } \rightarrow \text{DATABLPL}$
 - $\text{GENDER ABL PL } \rightarrow \text{DATABLPL}$

2. Relate morphomic forms to particular surface forms (for a particular word class) (transducer σ)
 - Σ^* [I-II DATABLPL : is]
 - Σ^* [NEUTNAPL : a]
 - Σ^* [I-II NEUTNASG : um]
 - Σ^* [III DATABLPL : ibus]
Paradigmatic variation
A Computational Characterization (2)

Given a set of bases annotated with morphosyntactic features, inflected forms:

\[(29) \quad \Gamma = B \circ \alpha \circ \sigma\]

We could also precompile \(\sigma' = \alpha \circ \sigma\), thereby hiding the abstraction
Reduplication
(if we have time ...)

Ruduplication involves potentially unbounded copying
 ▶ Copying not allowed by strict FSTs
 ▶ Bounded copying—however inelegantly—can be handled by FSTs

Gothic past tense of Class VII verbs

<table>
<thead>
<tr>
<th>Infinitive</th>
<th>Gloss</th>
<th>Preterite</th>
</tr>
</thead>
<tbody>
<tr>
<td>haldan</td>
<td>‘hold’</td>
<td>haíhald</td>
</tr>
<tr>
<td>ga-staldan</td>
<td>‘possess’</td>
<td>ga-staístald</td>
</tr>
<tr>
<td>af-áikan</td>
<td>‘deny’</td>
<td>af-aiáik</td>
</tr>
<tr>
<td>slepan</td>
<td>‘sleep’</td>
<td>saíslep</td>
</tr>
</tbody>
</table>
Reduplication (2)

Rule:

- Prefix syllable (A)Caí to the stem
 - C is a consonant position
 - (A) is an optional appendix position
- Copy the onset of the stem to the C position
 - If there is a pre-onset appendix /s/ (i.e., /s/ before /p,t,k/), copy to the (A) position

The transducer for this simply hard-encodes the proper sequences to obtain copying

- e.g., 1) ε:h arc, 2) ε:ái arc, 3) h:h arc
Unbounded Reduplication

Consider Bambara noun reduplication:

(30) \(wulu \ o \ wulu \)
 dog MARKER dog
 ‘whichever dog’

(31) \(wulu-nyinina \ o \ wulu-nyinina \)
 dog searcher MARKER dog searcher
 ‘whichever dog searcher’

(32) \(malo-nyinina-filéla \ o \ malo-nyinina-filéla \)
 rice searcher watcher MARKER
 rice searcher watcher
 ‘whichever rich searcher watcher’

The morpheme \(o \) in principle is unbounded
 * Cannot simply hard-code material before/after \(o \)
Unbounded Reduplication (2)

Think of reduplication as 2 components:

1. Prosodic constraints: e.g., make sure reduplicated material is of form (A)Caí
 ▶ This can be handled with regular finite-state operations

2. Copying component: verify that prefix matches the base
For Gothic, assume transducer R, which composes with a base β and adds indices to elements in prefix and base

\[(33) \quad \alpha = \beta \circ R = (A_1)C_2 ai\beta'\]

So, the input stem $skáip$ will result in the output $X_1 X_2 aís_1 k_2 áip$

- X ranges over possible segments
- An additional component checks whether X is well-formed, i.e., indices match