Parsing with CFGs

L545

Dept. of Linguistics, Indiana University

Spring 2013

DA

Parsing with CFGs: Overview

Input: a string
Output: a (single) parse tree
» A useful step in the process of obtaining meaning

» We can view the problem as searching through all
possible parses (tree structures) to find the right one

Strategies:

top-down (goal-directed) vs. bottom-up (data-directed)
depth-first vs. breadth-first

left-corner parsing (adding bottom-up to top-down)
chart parsing (saving partial results)

vy vV VvV VY

Parsers and criteria to evaluate them

» Function of a parser:
» grammar + string — analysis trees
» Main criteria for evaluating parsers:
» Correctness: for every grammar and for every string,

every analysis returned by parser is an actual analysis
> Correctness w.r.t. our target language is thus dependent
upon the grammar we give the parser
» Completeness: for every grammar and for every string,
every correct analysis is found by the parser
> For large grammars, this may not be practical, and for
some situations, we may want only one analysis
» Efficiency: storing partial parses is essential in being
efficient (to be explained)

Example grammar and desired tree

vV V. v v v VY

vV vV VvV Vv

Sentence: Book that flight.

S —> NP VP

S — Aux NP VP
S—> VP

NP — Det Nominal
Nominal — Noun
Nominal — Noun
Nominal

Nominal — Nominal PP
NP — Proper-Noun
VP — Verb

VP — Verb NP

S

VP

PN

Verb

NP

N

book Det

that

Nominal

Noun

flight

Direction of processing |
Top-down

Goal-driven processing is top-down:

» Start with the start symbol
» Derive sentential forms

» If the string is among the sentences derived this way, it
is part of the language

Problem: Left-recursive rules (e.g., NP — NP PP) can give
rise to infinite hypotheses

» Plus, we can expand non-terminals which cannot lead
to the existing input

» No tree takes the properties of the lexical items into
account until the last stage

How are alternatives explored?
|. Depth-first

At every choice point: Pursue a single alternative completely
before trying another alternative

» State of affairs at the choice points needs to be
remembered. Choices can be discarded after
unsuccessful exploration.

» Depth-first search is not necessarily complete.

Problem for top-down, left-to-right, depth-first processing:

» left-recursion
For example, a rule like N' — N’ PP leads to
non-termination.

How are alternatives explored?
II. Breadth-first

At every choice point: Pursue every alternative for one step
atatime

» Requires serious bookkeeping since each alternative

computation needs to be remembered at the same time.
» Search is guaranteed to be complete.

An example grammar

Lexicon:

Vi = saw
Det — the
Det — a
N — draQOn
N — boy
Adj — young

Syntactic rules
VP — Vt NP
NP — Det N
N — AdjN

D QC

Top-down, left-right, depth-first tree traversal

S - NP VP Det — the

VP — Vit NP Det — a

NP — Det N N — dragon

N — AdjN N — boy

Vt — saw Adj — young

Sy
/\
NP> VP1g
/\ /\
Det3 N5 Viy1 NP13

| N | N

thes Adjg Ng sawqio Detiy N+g
| | | |

youngz boyg ais dragonq7
o = = =

A walk-through

Goal Input Action

S the young boy saw the dragon | expand S

NP VP the young boy saw the dragon | expand NP
Det N VP the young boy saw the dragon | expand Det
the N VP the young boy saw the dragon | consume the
N VP young boy saw the dragon expand N
dragon VP | young boy saw the dragon fail with drago
boy VP young boy saw the dragon fail with boy; (re
Adj N VP young boy saw the dragon expand Adj
young N VP | young boy saw the dragon consume youn
N VP boy saw the dragon expand N

A walk-through (cont.)

Goal Input Action

dragon VP | boy saw the dragon | fail with dragon
boy VP boy saw the dragon | consume boy
VP saw the dragon expand VP

Vit NP saw the dragon expand Vt

saw NP saw the dragon consume saw
NP the dragon expand NP

Det N the dragon expand Det
the N the dragon consume the

N dragon expand N
dragon dragon consume dragon
<empty> | <empty> SUCCESS!

Remaining choices

Top-down
Bottom-u

There are still some choices that have to be made:
1. Which leaf node should be expanded first?

Left-corner parsing
Chart pars

» Left-to-right strategy moves through the leaf nodes in a

left-to-right fashion

2. Which rule should be applied first for multiple rules with

same LHS?

Ear

(e.g., probabilities)

» Can just use the textual order of rules from the grammar
» There may be reasons to take rules in a particular order

Parsing with an agenda

Search states are kept in an agenda

» Search states consist of partial trees and a pointer to
the next input word in the sentence

Based on what we've seen before, apply the next item on the
agenda to the current tree

» Add new items to the agenda, based on the rules in the
grammar which can expand at the (leftmost) node
» We maintain the depth-first strategy by adding new
hypotheses (rules) to the front of the agenda
» If we added them to the back, we would have a
breadth-first strategy

Direction of processing Il

Bottom-up

Data-driven processing is bottom-up:
» Start with the sentence.
» For each substring, find a grammar rule which covers it.
» If you finish with a sentence, it is grammatical.

Problem: Epsilon rules (N — ¢) allow us to hypothesize
empty categories anywhere in the sentence.
» Also, while any parse in progress is tied to the input,
many may not lead to an S!

Bottom-up, left-right, depth-first tree traversal

S - NP VP Det — the

VP — Vit NP Det — a

NP — Det N N — dragon

N — AdjN N — boy

Vt — saw Adj — young

Si7
/\
NPg VP1g
/\ /\
Detz N7 Vt10 NP15

| N | N

the1 Adjs Ng sawg Detqo N14
| | | |

youngs boys a1 dragonis
=} = = z

A walk-through

Analysis Input Action

<empty> the young boy saw the | shift the
dragon

the young boy saw the | reduce theto Det
dragon

Det young boy saw the | shift young after failin
dragon reduce Det

Det young | boy saw the dragon reduce young to Adj «

failing to reduce Det yo

Det Adj boy saw the dragon shift boy

Det Adj boy | saw the dragon reduce boyto N

Det Adj N saw the dragon reduce AdjNto N

Det N saw the dragon reduce Det N to NP

NP saw the dragon shift saw

A walk-through (cont.)

Analysis Input Action

NP saw the dragon | reduce saw to Vt
NP Vit the dragon | shift the

NP Vt the dragon reduce the to Det
NP Vit Det dragon shift dragon

NP Vt Det dragon | <empty> reduce dragonto N
NP Vit Det N <empty> reduce Det N to NP
NP Vt NP <empty> reduce Vit NP to VP
NP VP <empty> reduce NP VP to S
S <empty> SUCCESS!

Left-corner parsing

Motivation:

» Both pure top-down & bottom-up approaches are
IneffICIent Chart parsing

» The correct top-down parse has to be consistent with -
the left-most word of the input

Left-corner parsing

Left-corner parsing: a way of using bottom-up constraints
as part of a top-down strategy.
» Left-corner rule:

» expand a node with a grammar rule only if the current
input can serve as the left corner from this rule

» Left-corner from a rule: first word along the left edge of
a derivation from the rule

Put the left-corners into a table, which then guide parsing

Grammar with left-corners

Left-corner parsing
Lexicon: Syntactic rules: Left corners
Vt - saw S - NP VP S = Det
Det — the VP — Vi NP VP = Vit
Det — a NP — DetN NP = Det
N — dragon N — Adj N
N — boy
Adj — young

N = Adj

D QC

Left corner parsing example

Consider again book that flight, with these rules:

S — NP VP Nom. — Noun VP — Verb

S — Aux NP VP Nom. — Noun Nom. VP — Verb NP Left-comer parsing
S— VP Nom. — Nom. PP UL
NP — Det Nom. NP — Proper-Noun catey

With an ambiguous word like book, left corners tell us the
Noun reading is ruled out—it cannot start an S

S = Aux S = Verb VP = Verb
S = Det NP = Det
S = PropN NP = PropN

Moving top-down, we hypothesize S — NP VP, but the NP’s
left-corner is incompatible with any category of book

» Thus, no NP expansions are considered

Chart parsing

Problem: Inefficiency of recomputing subresults

Two example sentences and their potential analysis:

Left-corner parsing

(1) He [gave [the young cat] [to Bill]]. SR
(2) He [gave [the young cat] [some milK]].

Ear

The corresponding grammar rules:

> VP — Vitrans NP PPy,
» VP — Vitrans NP NP

Regardless of final sentence analysis, the object NP (the
young cat) will have the same analysis

= No need to analyze it twice

u]
8]
I
i
i

Solution: Chart Parsing (Memoization)

Store intermediate results:

a) completely analyzed constituents:
well-formed substring table or (passive) chart

\{

b) partial and complete analyses:
(active) chart

In other words, instead of recalculating that the young
catis an NP, we'll store that information

» Dynamic programming: never go backwards
All intermediate results need to be stored for
completeness.

All possible solutions are explored in parallel.

v

\{

v

Cocke Younger Kasami (CYK) Algorithm

» Grammar has to be in Chomsky Normal Form (CNF):
» RHS with a single terminal: A — a

» RHS with two non-terminals: A — BC
» noerules (A — ¢€)

ner parsing

» A representation of the string showing positions and
word indices:

o Wiy W2 o, W3 g Wy -y Ws -5 We g
For example:

-, the -, young -, boy -, saw -, the -, dragon -

Well-formed substring table (passive chart)

» The well-formed substring table, henceforth (passive)
chart, for a string of length nis an n x n matrix.

» The field (i, j) of the chart encodes the set of all

categories of constituents that start at position i and
end at position j, i.e.

» chart(ij) = {A | A =5 Wir...w)

» The matrix is triangular since no constituent ends
before it starts.

u]

8]
I

i
i

Coverage Represented in the Chart

An input sentence with 6 words:
o Wiy W2, W3 -3 Wy oy W5 We g

Coverage represented in the chart:

TO:
1 |2 |3 |4 |5 |6

0/0-1]0-2|0-3|04]|05]|0=6

T 12 |13 [1-4 | 15 | 1-6
FROM- 75 23| 24|25 |26
3 34|35 |36

4 4-5 | 4-6

5 5-6

u]
8]
I
i
i

D QC

Example for Coverage Represented in Chart

Example sentence:

-, the -, young -, boy -, saw -, the -, dragon -,

Coverage represented in chart:

1 2 3 4 5 6

0 the the young the young boy the young boy saw the young boy saw the the young boy
1 young young boy young boy saw young boy saw the young boy saw
2 boy boy saw boy saw the boy saw the dr.
3 saw saw the saw the dragon
4 the the dragon
5 dragon

o ﬁ' = = :f v/') Q (:¢

Parsing with a Passive Chart

» The CKY algorithm is used, which:

» explores all analyses in parallel,

» in a bottom-up fashion, &
» stores complete subresults
» This algorithm is used to:

Left-corner parsing

» add top-down guidance (only use rules derivable from
start-symbol), but avoid left-recursion problem
» store partial analyses

An Example for a Filled-in Chart

Input sentence:
-, the -, young -, boy -, saw -, the - dragon -,

1 2 3 4 5 6
0 | {Det} | {} {NP} | {} {) {S)
1 {Adj} | (N} | {} {} {}
Chart: 2 N} | () {} {}
3 {(V,N} | {} {VP}
4 {Det} | {NP}
5 {N}

Filling in the Chart

» We build all constituents that end at a certain point
before we build constituents that end at a later point.

1123 4|5]| 6
0/1/3/6/10/15)21 for j := 1 to length(string)
1 251911420 . g
=1 = | — = lexical_chart fill(j — 1,
2 4| 8 |13 |19 o
3 > T12 E fori:=j—-2downto0
— = syntactic_chart fill(
4 1| 17
5 16

lexical_chart fill(j-1,))

» Idea: Lexical lookup. Fill the field (j — 1,j) in the chart
with the preterminal category dominating word j.
» Realized as:

chart(j —1,j) := {X| X - word; € P}

D QC

syntactic_chart_fill(i,j)

» Idea: Perform all reduction steps using syntactic rules
s.t. the reduced symbol covers the string from i to j.
A—->BCeP,
i<k <j,
B € chart(i, k),
C € chart(k, j)
» Explicit loops over every possible value of k and every
context free rule:
chart(i,j) := {}.
fork . =i+1toj—-1
forevery A - BC e P
if B € chart(i, k) and C € chart(k, j) then
chart(i,j) := chart(i,) U {A}.

» Realized as: chart(i,j) = {A

The Complete CYK Algorithm

Input: start category S and input string
n = length(string)

forj:=1ton

chart(j —1,j) := {X | X — word; € P}
fori:=j—2downto0

chart(i,j) == {}
fork =i+1toj—-1
forevery A > BC e P
if B € chart(i, k) and C € chart(k,j) then
chart(i,j) =

chart(i,j) U {A}
Output: if S € chart(0, n) then accept else reject

[m]

=

How memoization helps

If we look back to the chart for the sentence the young boy
saw the dragon:

1 2 3 4 5 6
0 | {Det} | {} {NP} | §} {} {S}
1 {Adj} | {N} | §} {} {}
2 Ny 18 {} {}
3 (V\N} | §) {VP}
4 {Det} | {NP}
5 {N}

» At cell (3,6), a VP is built by combining the V at (3,4)
with the NP at (4,6), based on the rule VP — V NP

» Regardless of further processing, that VP is never
rebuilt

From CYK to Earley

» CKY algorithm:

» explores all analyses in parallel

» bottom-up

» stores complete subresults

» desiderata:

» add top-down guidance (to only use rules derivable
from start-symbol), but avoid left-recursion problem of
top-down parsing

» store partial analyses (useful for rules right-hand sides
longer than 2)

» Idea: also store partial results, so that the chart
contains

» passive items: complete results

» active items: partial results

Representing active chart items

» well-formed substring entry:
chart(i,j,A):from i to j there is a constituent of catego
» More elaborate data structure needed to store partial '
results:
» rule considered + how far processing has succeeded
» dotted rule:
A — o &f]
» active chart entry:
chart(i,j,state(A,B8)) Note: «is not represented
A (incompletely) goes from i to j and can be completed
by finding 8

Dotted rule examples

» A dotted rule represents a state in processing a rule.
» Each dotted rule is a hypothesis:

| We found a vp if we still find

vp — e v-ditr np pp-to a v-ditr, a np, and a pp-to

vp — v-ditr e np pp-to a np and a pp-to
vp — v-ditr np e pp-to a pp-to
vp — v-ditr np pp-to nothing

» The first three are active items (or active edges)
» The last one is a passive item/edge

u]
8]
I

i
i

ner parsing

The three actions in Earley’s algorithm

Inj[A — « e Bp] we call B the active constituent.

ner parsing

» Prediction: Search all rules realizing the active
constituent.

» Scanning: Scan over each word in the input string.

» Completion: Combine an active edge with each
passive edge covering its active constituent.

Success state: o[start — se]

u]
8]
I

i
i

A closer look at the three actions
Prediction

Prediction: foreach [A — « & B g]in chart
for each B — v in rules
add j[B — e v]to chart

Prediction is the task of saying what kinds of input we expect
to see

» Add a rule to the chart saying that we have not seen v,
but when we do, it will form a B

» The rule covers no input, so it goes from j to |

Such rules provide the top-down aspect of the algorithm

A closer look at the three actions
Scanning

Scanning: let wy ... w;...w, be the input string
foreach [A — « e_; w;] in chart
add j[A — a w; e f]to chart

Scanning reads in lexical items

» We add a dotted rule indicating that a word has been
seen between j— 1 and

» Such a completed dotted rule can be used to complete
other dotted rules

These rules provide the bottom-up component to the
algorithm

A closer look at the three actions
Completion

Completion (fundamental rule of chart parsing):

foreach [A — « & Bp]andx[B — 7y e]inchart
add /[A — « B e] tochart

Completion combines two rules in order to move the dot, i.e.,
indicate that something has been seen

» A rule covering B has been seen, so any rule A which
refers to B in its RHS moves the dot

» Instead of spanning from i to k, A now spans from i to j,
which is where B ended

Once the dot is moved, the rule will not be created again

Eliminating scanning

Scanning: for each [A — « e_; w;] in chart
add [A — a w; ¢ f]to chart

Completion:
foreach [A — « & Bp]and«[B — v e]inchart
add /[A — a B e g] to chart

Observation: Scanning = completion + words as passive
edges. One can thus simplify scanning to adding a passive
edge for each word:

for each w;in wy ... wj,
add j_{[w; — e]tochart

Earley’s algorithm without scanning

General setup:

apply prediction and completion to every item added to chart
Start:

add g[start — e s] to chart
for each w;in wy ... wj,

add j_{[w; — e]tochart

Success state:

o[start — sep]

A tiny example grammar

Lexicon:
vp —
det

-
n g
-

left
the
boy
girl

Syntactic rules:

S d

np vp

np — detn

D QC

An example run

start

predict from 1
predict from 2
predict from 3

scan "the”

complete 4 with 5
complete 3 with 6
predict from 7
predict from 7

scan "boy”
complete 8 with 10
complete 7 with 11
complete 2 with 12
predict from 13
scan "left”

complete 14 with 15
complete 13 with 16
complete 1 with 17

— — — — — —)),
ONOARAWN = O ©

©® NGO AL~

o[start — e]
o[s — eo npvp]
o[np — g detn]
o[det — 0q the]
o[the e 01]
o[det — the o]
o[np — dete;n]
1[n — ey boy]
1[n — ey girl]
1[boy — eo]

. 1[n = Dboy e;]

. o[np — detn ey]
. o[s = npey vp]
. 2[Vp — o5 Ieft]
. 2[Ieft i '3]

. 2[vp — left 3]

. o[s = npvp eg]
. o[start — seg]

Improving the efficiency of lexical access

» In the setup just described:
» Words are stored as passive items so that prediction is
used for preterminal categories
» Set of predicted words for a preterminal can be huge
» If each word in the grammar is introduced by a
preterminal rule cat — word, one can add a passive
item for each preterminal category which can
dominate the word instead of for the word itself

» What needs to be done:
» syntactically distinguish syntactic rules from rules with
preterminals on the left-hand side, i.e. lexical entries.
» modify scanning to take lexical entries into account

Earley parsing

The Earley algorithm is efficient, running in polynomial time.
» Technically, however, it is a recognizer, not a parser

To make it a parser, each state needs to be augmented with
a pointer to the states that its rule covers

» For example, VP points to state where V was completed
and state where NP was completed

» Also true of the CKY algorithm: pointers need to be
added to make it a parser

	Direction of processing
	Top-down
	Bottom-up

	Left-corner parsing
	Chart parsing
	CYK
	Earley

