
Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

EarleyParsing with CFGs

L545

Dept. of Linguistics, Indiana University
Spring 2013

1 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

Parsing with CFGs: Overview

Input: a string
Output: a (single) parse tree
I A useful step in the process of obtaining meaning
I We can view the problem as searching through all

possible parses (tree structures) to find the right one

Strategies:
I top-down (goal-directed) vs. bottom-up (data-directed)
I depth-first vs. breadth-first
I left-corner parsing (adding bottom-up to top-down)
I chart parsing (saving partial results)

2 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

Parsers and criteria to evaluate them

I Function of a parser:
I grammar + string→ analysis trees

I Main criteria for evaluating parsers:
I Correctness: for every grammar and for every string,

every analysis returned by parser is an actual analysis
I Correctness w.r.t. our target language is thus dependent

upon the grammar we give the parser
I Completeness: for every grammar and for every string,

every correct analysis is found by the parser
I For large grammars, this may not be practical, and for

some situations, we may want only one analysis
I Efficiency: storing partial parses is essential in being

efficient (to be explained)

3 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

Example grammar and desired tree

Sentence: Book that flight.

I S→ NP VP
I S→ Aux NP VP
I S→ VP
I NP→ Det Nominal
I Nominal→ Noun
I Nominal→ Noun

Nominal
I Nominal→ Nominal PP
I NP→ Proper-Noun
I VP→ Verb
I VP→ Verb NP

S

VP

NP

Nominal

Noun

flight

Det

that

Verb

book

4 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

Direction of processing I
Top-down

Goal-driven processing is top-down:
I Start with the start symbol
I Derive sentential forms

I If the string is among the sentences derived this way, it
is part of the language

Problem: Left-recursive rules (e.g., NP→ NP PP) can give
rise to infinite hypotheses
I Plus, we can expand non-terminals which cannot lead

to the existing input
I No tree takes the properties of the lexical items into

account until the last stage

5 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

How are alternatives explored?
I. Depth-first

At every choice point: Pursue a single alternative completely
before trying another alternative

I State of affairs at the choice points needs to be
remembered. Choices can be discarded after
unsuccessful exploration.

I Depth-first search is not necessarily complete.

Problem for top-down, left-to-right, depth-first processing:
I left-recursion

For example, a rule like N’→ N’ PP leads to
non-termination.

6 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

How are alternatives explored?
II. Breadth-first

At every choice point: Pursue every alternative for one step
at a time

I Requires serious bookkeeping since each alternative
computation needs to be remembered at the same time.

I Search is guaranteed to be complete.

7 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

An example grammar

Lexicon:
Vt→ saw
Det→ the
Det→ a

N→ dragon
N→ boy

Adj→ young

Syntactic rules:
S→ NP VP
VP→ Vt NP
NP→ Det N
N→ Adj N

8 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

Top-down, left-right, depth-first tree traversal

S→ NP VP
VP→ Vt NP
NP→ Det N
N→ Adj N
Vt→ saw

Det→ the
Det→ a
N→ dragon
N→ boy
Adj→ young

S1

VP10

NP13

N16

dragon17

Det14

a15

Vt11

saw12

NP2

N5

N8

boy9

Adj6

young7

Det3

the4

9 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

A walk-through

Goal Input Action
S the young boy saw the dragon expand S
NP VP the young boy saw the dragon expand NP
Det N VP the young boy saw the dragon expand Det
the N VP the young boy saw the dragon consume the
N VP young boy saw the dragon expand N
dragon VP young boy saw the dragon fail with dragon
boy VP young boy saw the dragon fail with boy; (re)expand N
Adj N VP young boy saw the dragon expand Adj
young N VP young boy saw the dragon consume young
N VP boy saw the dragon expand N

10 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

A walk-through (cont.)

Goal Input Action
dragon VP boy saw the dragon fail with dragon
boy VP boy saw the dragon consume boy
VP saw the dragon expand VP
Vt NP saw the dragon expand Vt
saw NP saw the dragon consume saw
NP the dragon expand NP
Det N the dragon expand Det
the N the dragon consume the
N dragon expand N
dragon dragon consume dragon
<empty> <empty> SUCCESS!

11 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

Remaining choices

There are still some choices that have to be made:
1. Which leaf node should be expanded first?

I Left-to-right strategy moves through the leaf nodes in a
left-to-right fashion

2. Which rule should be applied first for multiple rules with
same LHS?

I Can just use the textual order of rules from the grammar
I There may be reasons to take rules in a particular order

(e.g., probabilities)

12 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

Parsing with an agenda

Search states are kept in an agenda
I Search states consist of partial trees and a pointer to

the next input word in the sentence

Based on what we’ve seen before, apply the next item on the
agenda to the current tree
I Add new items to the agenda, based on the rules in the

grammar which can expand at the (leftmost) node
I We maintain the depth-first strategy by adding new

hypotheses (rules) to the front of the agenda
I If we added them to the back, we would have a

breadth-first strategy

13 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

Direction of processing II
Bottom-up

Data-driven processing is bottom-up:
I Start with the sentence.
I For each substring, find a grammar rule which covers it.
I If you finish with a sentence, it is grammatical.

Problem: Epsilon rules (N → ε) allow us to hypothesize
empty categories anywhere in the sentence.
I Also, while any parse in progress is tied to the input,

many may not lead to an S!

14 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

Bottom-up, left-right, depth-first tree traversal

S→ NP VP
VP→ Vt NP
NP→ Det N
N→ Adj N
Vt→ saw

Det→ the
Det→ a
N→ dragon
N→ boy
Adj→ young

S17

VP16

NP15

N14

dragon13

Det12

a11

Vt10

saw9

NP8

N7

N6

boy5

Adj4

young3

Det2

the1

15 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

A walk-through

Analysis Input Action
<empty> the young boy saw the

dragon
shift the

the young boy saw the
dragon

reduce the to Det

Det young boy saw the
dragon

shift young after failing to
reduce Det

Det young boy saw the dragon reduce young to Adj after
failing to reduce Det young

Det Adj boy saw the dragon shift boy
Det Adj boy saw the dragon reduce boy to N
Det Adj N saw the dragon reduce Adj N to N
Det N saw the dragon reduce Det N to NP
NP saw the dragon shift saw

16 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

A walk-through (cont.)

Analysis Input Action
NP saw the dragon reduce saw to Vt
NP Vt the dragon shift the
NP Vt the dragon reduce the to Det
NP Vt Det dragon shift dragon
NP Vt Det dragon <empty> reduce dragon to N
NP Vt Det N <empty> reduce Det N to NP
NP Vt NP <empty> reduce Vt NP to VP
NP VP <empty> reduce NP VP to S
S <empty> SUCCESS!

17 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

Left-corner parsing

Motivation:
I Both pure top-down & bottom-up approaches are

inefficient
I The correct top-down parse has to be consistent with

the left-most word of the input

Left-corner parsing: a way of using bottom-up constraints
as part of a top-down strategy.
I Left-corner rule:

I expand a node with a grammar rule only if the current
input can serve as the left corner from this rule

I Left-corner from a rule: first word along the left edge of
a derivation from the rule

Put the left-corners into a table, which then guide parsing

18 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

Grammar with left-corners

Lexicon:
Vt→ saw
Det→ the
Det→ a

N→ dragon
N→ boy

Adj→ young

Syntactic rules:
S→ NP VP
VP→ Vt NP
NP→ Det N
N→ Adj N

Left corners:
S⇒ Det
VP⇒ Vt

NP⇒ Det
N⇒ Adj

19 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

Left corner parsing example

Consider again book that flight, with these rules:
S→ NP VP
S→ Aux NP VP
S→ VP
NP→ Det Nom.

Nom. → Noun
Nom. → Noun Nom.
Nom. → Nom. PP
NP→ Proper-Noun

VP→ Verb
VP→ Verb NP

With an ambiguous word like book, left corners tell us the
Noun reading is ruled out—it cannot start an S

S⇒ Aux
S⇒ Det
S⇒ PropN

S⇒ Verb
NP⇒ Det
NP⇒ PropN

VP⇒ Verb

Moving top-down, we hypothesize S→ NP VP, but the NP’s
left-corner is incompatible with any category of book
I Thus, no NP expansions are considered

20 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

Chart parsing
Problem: Inefficiency of recomputing subresults

Two example sentences and their potential analysis:

(1) He [gave [the young cat] [to Bill]].

(2) He [gave [the young cat] [some milk]].

The corresponding grammar rules:
I VP→ Vditrans NP PPto
I VP→ Vditrans NP NP

Regardless of final sentence analysis, the object NP (the
young cat) will have the same analysis

⇒ No need to analyze it twice

21 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

Solution: Chart Parsing (Memoization)

I Store intermediate results:
a) completely analyzed constituents:

well-formed substring table or (passive) chart

b) partial and complete analyses:
(active) chart

I In other words, instead of recalculating that the young
cat is an NP, we’ll store that information

I Dynamic programming: never go backwards
I All intermediate results need to be stored for

completeness.
I All possible solutions are explored in parallel.

22 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

Cocke Younger Kasami (CYK) Algorithm

I Grammar has to be in Chomsky Normal Form (CNF):
I RHS with a single terminal: A → a
I RHS with two non-terminals: A → BC
I no ε rules (A → ε)

I A representation of the string showing positions and
word indices:

·0 w1 ·1 w2 ·2 w3 ·3 w4 ·4 w5 ·5 w6 ·6

For example:

·0 the ·1 young ·2 boy ·3 saw ·4 the ·5 dragon ·6

23 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

Well-formed substring table (passive chart)

I The well-formed substring table, henceforth (passive)
chart, for a string of length n is an n × n matrix.

I The field (i, j) of the chart encodes the set of all
categories of constituents that start at position i and
end at position j, i.e.

I chart(i,j) = {A | A ⇒∗ wi+1 . . .wj}

I The matrix is triangular since no constituent ends
before it starts.

24 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

Coverage Represented in the Chart

An input sentence with 6 words:

·0 w1 ·1 w2 ·2 w3 ·3 w4 ·4 w5 ·5 w6 ·6

Coverage represented in the chart:

from:

to:
1 2 3 4 5 6

0 0–1 0–2 0–3 0–4 0–5 0–6
1 1–2 1–3 1–4 1–5 1–6
2 2–3 2–4 2–5 2–6
3 3–4 3–5 3–6
4 4–5 4–6
5 5–6

25 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

Example for Coverage Represented in Chart

Example sentence:

·0 the ·1 young ·2 boy ·3 saw ·4 the ·5 dragon ·6

Coverage represented in chart:
1 2 3 4 5 6

0 the the young the young boy the young boy saw the young boy saw the the young boy saw the dragon
1 young young boy young boy saw young boy saw the young boy saw the dragon
2 boy boy saw boy saw the boy saw the dragon
3 saw saw the saw the dragon
4 the the dragon
5 dragon

26 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

Parsing with a Passive Chart

I The CKY algorithm is used, which:
I explores all analyses in parallel,
I in a bottom-up fashion, &
I stores complete subresults

I This algorithm is used to:
I add top-down guidance (only use rules derivable from

start-symbol), but avoid left-recursion problem
I store partial analyses

27 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

An Example for a Filled-in Chart

Input sentence:
·0 the ·1 young ·2 boy ·3 saw ·4 the ·5 dragon ·6

Chart:

1 2 3 4 5 6
0 {Det} {} {NP} {} {} {S}
1 {Adj} {N} {} {} {}

2 {N} {} {} {}

3 {V, N} {} {VP}
4 {Det} {NP}
5 {N}

28 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

Filling in the Chart

I We build all constituents that end at a certain point
before we build constituents that end at a later point.

1 2 3 4 5 6
0 1 3 6 10 15 21
1 2 5 9 14 20
2 4 8 13 19
3 7 12 18
4 11 17
5 16

for j := 1 to length(string)
lexical chart fill(j − 1, j)
for i := j − 2 down to 0

syntactic chart fill(i, j)

29 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

lexical chart fill(j-1,j)

I Idea: Lexical lookup. Fill the field (j − 1, j) in the chart
with the preterminal category dominating word j.

I Realized as:

chart(j − 1, j) := {X | X→ wordj ∈ P}

30 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

syntactic chart fill(i,j)

I Idea: Perform all reduction steps using syntactic rules
s.t. the reduced symbol covers the string from i to j.

I Realized as: chart(i, j) =

A

∣∣∣∣∣∣∣∣∣∣∣
A → BC ∈ P,
i < k < j,
B ∈ chart(i, k),
C ∈ chart(k , j)


I Explicit loops over every possible value of k and every

context free rule:
chart(i, j) := {}.
for k := i + 1 to j − 1

for every A → BC ∈ P
if B ∈ chart(i, k) and C ∈ chart(k , j) then

chart(i, j) := chart(i, j) ∪ {A}.

31 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

The Complete CYK Algorithm

Input: start category S and input string

n := length(string)

for j := 1 to n
chart(j − 1, j) := {X | X→ wordj ∈ P}
for i := j − 2 down to 0

chart(i, j) := {}
for k := i + 1 to j − 1

for every A → BC ∈ P
if B ∈ chart(i, k) and C ∈ chart(k , j) then

chart(i, j) := chart(i, j) ∪ {A}

Output: if S ∈ chart(0, n) then accept else reject

32 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

How memoization helps

If we look back to the chart for the sentence the young boy
saw the dragon:

1 2 3 4 5 6
0 {Det} {} {NP} {} {} {S}
1 {Adj} {N} {} {} {}

2 {N} {} {} {}

3 {V, N} {} {VP}
4 {Det} {NP}
5 {N}

I At cell (3,6), a VP is built by combining the V at (3,4)
with the NP at (4,6), based on the rule VP→ V NP

I Regardless of further processing, that VP is never
rebuilt

33 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

From CYK to Earley

I CKY algorithm:
I explores all analyses in parallel
I bottom-up
I stores complete subresults

I desiderata:
I add top-down guidance (to only use rules derivable

from start-symbol), but avoid left-recursion problem of
top-down parsing

I store partial analyses (useful for rules right-hand sides
longer than 2)

I Idea: also store partial results, so that the chart
contains

I passive items: complete results
I active items: partial results

34 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

Representing active chart items

I well-formed substring entry:
chart(i,j,A): from i to j there is a constituent of category A

I More elaborate data structure needed to store partial
results:

I rule considered + how far processing has succeeded
I dotted rule:

i[A → α •j β]

I active chart entry:
chart(i,j,state(A,β)) Note: α is not represented
A (incompletely) goes from i to j and can be completed
by finding β

35 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

Dotted rule examples

I A dotted rule represents a state in processing a rule.
I Each dotted rule is a hypothesis:

We found a vp if we still find
vp→ • v-ditr np pp-to a v-ditr, a np, and a pp-to
vp→ v-ditr • np pp-to a np and a pp-to
vp→ v-ditr np • pp-to a pp-to
vp→ v-ditr np pp-to • nothing

I The first three are active items (or active edges)
I The last one is a passive item/edge

36 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

The three actions in Earley’s algorithm

In i[A → α •j Bβ] we call B the active constituent.

I Prediction: Search all rules realizing the active
constituent.

I Scanning: Scan over each word in the input string.
I Completion: Combine an active edge with each

passive edge covering its active constituent.

Success state: 0[start → s •n]

37 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

A closer look at the three actions
Prediction

Prediction: for each i[A → α •j B β] in chart
for each B → γ in rules

add j[B → •j γ] to chart

Prediction is the task of saying what kinds of input we expect
to see
I Add a rule to the chart saying that we have not seen γ,

but when we do, it will form a B
I The rule covers no input, so it goes from j to j

Such rules provide the top-down aspect of the algorithm

38 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

A closer look at the three actions
Scanning

Scanning: let w1 . . .wj . . .wn be the input string
for each i[A → α •j−1 wj β] in chart

add i[A → α wj •j β] to chart

Scanning reads in lexical items
I We add a dotted rule indicating that a word has been

seen between j − 1 and j
I Such a completed dotted rule can be used to complete

other dotted rules

These rules provide the bottom-up component to the
algorithm

39 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

A closer look at the three actions
Completion

Completion (fundamental rule of chart parsing):

for each i[A → α •k B β] and k [B → γ •j ] in chart
add i[A → α B •j β] to chart

Completion combines two rules in order to move the dot, i.e.,
indicate that something has been seen
I A rule covering B has been seen, so any rule A which

refers to B in its RHS moves the dot
I Instead of spanning from i to k , A now spans from i to j,

which is where B ended

Once the dot is moved, the rule will not be created again

40 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

Eliminating scanning

Scanning: for each i[A → α •j−1 wj β] in chart
add i[A → α wj •j β] to chart

Completion:
for each i[A → α •k B β] and k [B → γ •j ] in chart

add i[A → α B •j β] to chart

Observation: Scanning = completion + words as passive
edges. One can thus simplify scanning to adding a passive
edge for each word:

for each wj in w1 . . .wn

add j−1[wj → •j] to chart

41 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

Earley’s algorithm without scanning

General setup:
apply prediction and completion to every item added to chart

Start: add 0[start → •0 s] to chart

for each wj in w1 . . .wn

add j−1[wj → •j] to chart

Success state: 0[start → s •n]

42 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

A tiny example grammar

Lexicon:

vp → left

det → the

n → boy

n → girl

Syntactic rules:

s → np vp

np → det n

43 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

An example run

start 1. 0[start → •0 s]
predict from 1 2. 0[s → •0 np vp]
predict from 2 3. 0[np → •0 det n]
predict from 3 4. 0[det → •0 the]
scan ”the” 5. 0[the → •1]
complete 4 with 5 6. 0[det → the •1]
complete 3 with 6 7. 0[np → det •1 n ]
predict from 7 8. 1[n → •1 boy ]
predict from 7 9. 1[n → •1 girl ]
scan ”boy” 10. 1[boy → •2]
complete 8 with 10 11. 1[n → boy •2]
complete 7 with 11 12. 0[np → det n •2]
complete 2 with 12 13. 0[s → np •2 vp]
predict from 13 14. 2[vp → •2 left]
scan ”left” 15. 2[left → •3]
complete 14 with 15 16. 2[vp → left •3]
complete 13 with 16 17. 0[s → np vp •3]
complete 1 with 17 18. 0[start → s•3]

44 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

Improving the efficiency of lexical access

I In the setup just described:
I Words are stored as passive items so that prediction is

used for preterminal categories
I Set of predicted words for a preterminal can be huge

I If each word in the grammar is introduced by a
preterminal rule cat → word, one can add a passive
item for each preterminal category which can
dominate the word instead of for the word itself

I What needs to be done:
I syntactically distinguish syntactic rules from rules with

preterminals on the left-hand side, i.e. lexical entries.
I modify scanning to take lexical entries into account

45 / 46



Parsing with CFGs

Direction of
processing
Top-down

Bottom-up

Left-corner parsing

Chart parsing
CYK

Earley

Earley parsing

The Earley algorithm is efficient, running in polynomial time.
I Technically, however, it is a recognizer, not a parser

To make it a parser, each state needs to be augmented with
a pointer to the states that its rule covers
I For example, VP points to state where V was completed

and state where NP was completed
I Also true of the CKY algorithm: pointers need to be

added to make it a parser

46 / 46


	Direction of processing
	Top-down
	Bottom-up

	Left-corner parsing
	Chart parsing
	CYK
	Earley


