Chart parsing with non-atomic categories

L545
Spring 2013

(With thanks to Detmar Meurers)

Alteration a chart parser to handle unification

By utilizing unification as we parse, we can eliminate parses that don’t work in the end
- e.g., eliminate NPs that don’t match in agreement
- features with their VPs as we parse, instead of as a filter

Changes to the chart representation

Each state will be extended to include the LHS feature structure (FS), which can get augmented as it goes along
- i.e., Add a feature structure (in DAG form) to each state
- So, S → NP VP [0,0]
- Becomes S → NP VP [0,0], FS

The predictor, scanner, and completer have to pass the FS, so all three operations have to be altered

Earley parser with atomic categories

Prediction:
for each \([A \rightarrow \alpha \bullet \beta] \) in chart
for each \(B \rightarrow \gamma \) in rules
add \([r(B \rightarrow \gamma)] \) with \(\sigma = \text{mgu}(B, B') \) to chart

Scanning:
let \(w_1 \ldots w_n \) be the input string
for each \([A \rightarrow \alpha \bullet \beta, w_i \beta] \) in chart
add \([A \rightarrow \alpha \cdot w_i] \) to chart

Completion (fundamental rule of chart parsing):
for each \([A \rightarrow \alpha \bullet \beta] \) in chart
add \([A \rightarrow \alpha \beta] \) to chart

Prediction:
for each \([A \rightarrow \alpha \bullet \beta] \) in chart
for each \(B' \rightarrow \gamma \) in rules
add \([r(B \rightarrow \gamma)] \) with \(\sigma = \text{mgu}(B, B') \) to chart

The predictor takes the specification of B (i.e., FS) and finds the most general unifier (mgu) of B with B’
- If B & B’ do not unify, the rule for B’ is not added to the chart
- Initially (i.e., at position 0), all that happens is that a dotted rule with a FS is added to the chart
Completion

Completion (fundamental rule of chart parsing):

- For each \([A \rightarrow \alpha \bullet B \beta]\) in chart
- Add \([r(A \rightarrow \alpha \bullet B \beta)]\) with \(r = \text{mgd}(B, B')\) to chart

Again, a step of unification is added.
- \(B\) and \(B'\) must unify in order for the dot to move
- The resulting (more specific) FS is added to the chart

The subsumption problem (based on Covington 1994)

- \(S \rightarrow \text{NP VP}\)
- \(\text{NP} \rightarrow \text{Det N}\)
- \(\text{VP} \rightarrow V'(0)\)
- \(\text{VP} \rightarrow V'(X) \text{Comps}(X)\)
- \(V'(X) \rightarrow V(X)\)
- \(V'(X) \rightarrow \text{Adv V}(X)\)
- \(\text{Comps}(1) \rightarrow \text{NP}\)
- \(\text{Comps}(2) \rightarrow \text{NP} \text{NP}\)
- \(\text{Det} \rightarrow \text{the}\)
- \(\text{N} \rightarrow \text{dog}\)
- \(\text{N} \rightarrow \text{cat}\)
- \(\text{Adv} \rightarrow \text{often}\)
- \(V(0) \rightarrow \text{sings}\)
- \(V(1) \rightarrow \text{chases}\)
- \(V(2) \rightarrow \text{gives}\)

Using subsumption to check the chart

Subsumption check: Do not add a state to the chart if an equivalent or more general state is already there.
- In trying to add a singular determiner state at \([x, y]\), if the chart already has a determiner state at \([x, y]\) unspecified for number, do not add it.
- Without a subsumption restriction, we could add two states at \([x, y]\), one expecting to see a singular determiner, the other just a determiner.
 - On seeing a singular determiner, the parser advances the dot on both rules, creating two edges (since singular unifies with singular and with unspecified).
 - As a result, we would get duplicate edges.
- With subsumption, if either a singular or plural determiner is encountered, we advance the dot, creating only one edge (singular or plural) at \([x, y]\)

Checking for subsumption

Case 1

Let's define a function \(\text{subsumes_chk}\) which takes 2 arguments: more general item & more specific item

No variables:

- \(\text{subsumes_chk}(V'(1), V'(1))\) → yes
- \(\text{subsumes_chk}(V'(1), V'(2))\) → no

Compound terms without variables are either identical or different, i.e., here: subsumption = unification

Subsumption (based on Covington 1994)

- \(S \rightarrow \text{NP VP}\)
- \(\text{NP} \rightarrow \text{Det N}\)
- \(\text{VP} \rightarrow V'(0)\)
- \(\text{VP} \rightarrow V'(X) \text{Comps}(X)\)
- \(V'(X) \rightarrow V(X)\)
- \(V'(X) \rightarrow \text{Adv V}(X)\)
- \(\text{Comps}(1) \rightarrow \text{NP}\)
- \(\text{Comps}(2) \rightarrow \text{NP} \text{NP}\)
- \(\text{Det} \rightarrow \text{the}\)
- \(\text{N} \rightarrow \text{dog}\)
- \(\text{N} \rightarrow \text{cat}\)
- \(\text{Adv} \rightarrow \text{often}\)
- \(V(0) \rightarrow \text{sings}\)
- \(V(1) \rightarrow \text{chases}\)
- \(V(2) \rightarrow \text{gives}\)

Chart parsing

Subsumption

Completion (fundamental rule of chart parsing):

- For each \([A \rightarrow \alpha \bullet B \beta]\) in chart
- Add \([r(A \rightarrow \alpha \bullet B \beta)]\) with \(r = \text{mgd}(B, B')\) to chart

Again, a step of unification is added.
- \(B\) and \(B'\) must unify in order for the dot to move
- The resulting (more specific) FS is added to the chart
Checking for subsumption

Case 2

Variables only in more general term:
- subsumes_chk(V'(X),V'(1)) → yes
- subsumes_chk(foo(X,X),foo(1,1)) → yes
- subsumes_chk(foo(X,X),foo(1,2)) → no

Succeeds if a consistent variable assignment exists, i.e., here: subsumption = unification.

The restriction problem

Shieber et al 1995: Grammar accepting \(ab^n \) with \(N \) being instantiated to the successor representation of \(n \).

\[
\begin{align*}
\text{start} & \rightarrow r(0,N) \\
r(X,N) & \rightarrow r(s(X),N) \textbf{b} \\
r(N,N) & \rightarrow a
\end{align*}
\]

Prediction step with unification will loop:

1. \([\text{start} \rightarrow \textbullet_0 r(0,N)] \)
2. \([r(0,N) \rightarrow \textbullet_0 r(s(0),N) \textbf{b}] \)
3. \([r(s(0),N) \rightarrow r(s(s(0)),N) \textbf{b}] \)
4. \([r(s(s(0)),N) \rightarrow r(s(s(s(0))),N) \textbf{b}] \)
5. \([r(s(s(s(0))),N) \rightarrow r(s(s(s(s(0))),N))] \)

Using restriction to prevent prediction loops

- Prediction terminates for grammars with atomic categories, since a new item is only added to the chart if not already there and there is a finite number of atomic categories.
- Moving beyond atomic categories, there can be an infinite number of non-atomic categories.
- Prediction loop on left-recursive rules can be problematic again.
- Solution: restrict number of predicted categories to finitely many cases.

Prediction with restriction

for each \([A \rightarrow \alpha \textbullet_0 B \beta] \) in chart
for each \(B' \rightarrow \gamma \) in rules

\([r(B \rightarrow \gamma)] \) with \(\alpha = \text{restriction}(\text{mgu}(B,B')) \) to chart

\text{restriction}(\text{mgu}(B,B')) \) can be any operation reducing the number of possible substitutions to finite classes:
- depth bound on term complexity
- elimination of terms that are known to grow indefinitely
- use of only selected terms known not to grow indefinitely

This is sound since prediction only creates a hypothesis to be completed!

Example

Grammar: \(\text{start} \rightarrow r(0,N) \)
\[
\begin{align*}
r(X,N) & \rightarrow r(s(X),N) \textbf{b} \\
r(N,N) & \rightarrow a
\end{align*}
\]

Parsing using a restrictor that replaces every term deeper than 2 with a variable:

1. \([\text{start} \rightarrow \textbullet_0 r(0,N)] \)
2. \([r(0,N) \rightarrow \textbullet_0 r(s(0),N) \textbf{b}] \)
3. \([r(s(0),N) \rightarrow r(s(s(0)),N) \textbf{b}] \)
4. \([r(s(s(0)),N) \rightarrow r(s(s(s(0))),N) \textbf{b}] \)
5. \([r(s(s(s(0))),N) \rightarrow r(s(s(s(s(0))),N))] \)

...