Corpora for lexicography

- Can extract authentic & typical examples, with frequency information
- With sociolinguistic meta-data, can get an accurate description of usage and, with monitor corpora, its change over time
- Can complement intuitions about meanings

The study of loanwords, for example, can be bolstered by corpus studies
Lexical studies: Collocation

Collocations are characteristic co-occurrence patterns of two (or more) lexical items

- Tend to occur with greater than random chance
- The meaning tends to be more than the sum of its parts

These are extremely hard to define by intuition:

- Pro: Corpora have been able to reveal connections previously unseen
- Con: It may not be clear what the theoretical basis of collocations are
- Pro & Con: how do they fit into grammar?
Collocations & colligations

A **colligation** is a slightly different concept:

- collocation of a node word with a particular class of words (e.g., determiners)

Colligations often create “noise” in a list of collocations

- e.g., *this house* because *this* is so common on its own, and determiners appear before nouns
- Thus, people sometimes use stop words to filter out non-collocations
“People disagree on collocations”

- Intuition does not seem to be a completely reliable way to figure out what a collocation is
- Many collocations are overlooked: people notice unusual words & structures, but not ordinary ones

What your collocations are depends on exactly how you calculate them

- There is some notion that they are more than the sum of their parts

So, how do we practically define a collocation? . . .
What a collocation is

Collocations are expressions of two or more words that are in some sense conventionalized as a group

- strong tea (cf. powerful tea)
- international best practice
- kick the bucket

Importance of the context: “You shall know a word by a company it keeps” (Firth 1957)

- There are lexical properties that more general syntactic properties do not capture

This slide and the next 3 adapted from Manning and Schütze (1999), *Foundations of Statistical Natural Language Processing*
Prototypical collocations

Prototypically, collocations meet the following criteria:

▶ Non-compositional: meaning of *kick the bucket* not composed of meaning of parts
▶ Non-substitutable: *orange hair* just as accurate as *red hair*, but some don’t say it
▶ Non-modifiable: often we cannot modify a collocation, even though we normally could modify one of those words: ??*kick the red bucket*
Compositionality tests

The previous properties are good tests, but hard to verify with corpus data

(At least) two tests we can use with corpora:

▶ Is the collocation translated word-by-word into another language?
 ▶ e.g., Collocation *make a decision* is not translated literally into French

▶ Do the two words co-occur more frequently together than we would otherwise expect?
 ▶ e.g., *of the* is frequent, but both words are frequent, so we might expect this
Kinds of Collocations

Collocations come in different guises:

▶ Light verbs: verbs convey very little meaning but must be the right one:
 ▶ *make a decision* vs. *take a decision*, *take a walk* vs. *make a walk*

▶ Phrasal verbs: main verb and particle combination, often translated as a single word:
 ▶ *to tell off*, *to call up*

▶ Proper nouns: slightly different than others, but each refers to a single idea (e.g., *Brooks Brothers*)

▶ Terminological expressions: technical terms that form a unit (e.g., *hydraulic oil filter*)
Semantic prosody & preference

Semantic prosody = “a form of meaning which is established through the proximity of a consistent series of collocates” (Louw 2000)

- **Idea**: you can tell the semantic prosody of a word by the types of words it frequently co-occurs with
 - These are typically negative: e.g., *peddle, ripe for, get oneself verbed*

- This type of co-occurrence often leads to general semantic preferences
 - e.g., *utterly, totally*, etc. typically have a feature of ‘absence or change of state’
Collocation: from *silly ass* to lexical sets

Krishnamurthy 2000

Firth 1957: “You shall know a word by the company it keeps”

- Collocational meaning is a *syntagmatic* type of meaning, not a conceptual one
- e.g., in this framework, one of the meanings of *night* is the fact that it co-occurs with *dark*

Example: *ass* is associated with a particular set of adjectives (think of *goose* if you prefer)

- *silly, obstinate, stupid, awful*
- We can see a *lexical set* associated with this word

Lexical sets & collocations vary across genres, subcorpora, etc.
Notes on a collocation’s definition

Krishnamurthy 2000

We often look for words which are adjacent to make up a collocation, but this is not always true

- e.g., *computers run*, but these 2 words may only be in the same proximity.

We can also speak of upward/downward collocations:

- *downward*: involves a more frequent node word A with a less frequent collocate B
- *upward*: weaker relationship, tending to be more of a grammatical property
Where collocations fit into corpus linguistics:

1. Pattern recognition: recognize lexical and grammatical units
2. Frequency list generation: rank words
3. Concordancing: observe word behavior
4. Collocations: take concordancing a step further ...
Calculating collocations

Simplest approach: use frequency counts

- Two words appearing together a lot are a collocation

The problem is that we get lots of uninteresting pairs of function words (M&S 1999, table 5.1)

\[
\begin{array}{c|cc}
C(w_1, w_2) & w_1 & w_2 \\
80871 & \text{of} & \text{the} \\
58841 & \text{in} & \text{the} \\
26430 & \text{to} & \text{the} \\
21842 & \text{on} & \text{the} \\
\end{array}
\]

(Slides 14–30 are based on Manning & Schütze (M&S) 1999)
POS filtering

To remove frequent pairings which are uninteresting, we can use a POS filter (Justeson and Katz 1995)

▶ only examine word sequences which fit a particular part-of-speech pattern:
A N, N N, A A N, A N N, N A N, N N N, N P N
A N \hspace{1cm} \textit{linear function}
N A N \hspace{1cm} \textit{mean squared error}
N P N \hspace{1cm} \textit{degrees of freedom}

▶ Crucially, all other sequences are removed
P D \hspace{1cm} \textit{of the}
MV V \hspace{1cm} \textit{has been}
POS filtering (2)

Some results after tag filtering (M&S 1999, table 5.3)

<table>
<thead>
<tr>
<th>$C(w_1, w_2)$</th>
<th>w_1</th>
<th>w_2</th>
<th>Tag Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>11487</td>
<td>New</td>
<td>York</td>
<td>A N</td>
</tr>
<tr>
<td>7261</td>
<td>United</td>
<td>States</td>
<td>A N</td>
</tr>
<tr>
<td>5412</td>
<td>Los</td>
<td>Angeles</td>
<td>N N</td>
</tr>
<tr>
<td>3301</td>
<td>last</td>
<td>year</td>
<td>A N</td>
</tr>
</tbody>
</table>

⇒ Fairly simple, but surprisingly effective

- Needs to be refined to handle verb-particle collocations
- Kind of inconvenient to write out patterns you want
Determining strength of collocation

We want to compare the likelihood of 2 words next to other being a chance event vs. being a surprise

- Do the two words appear next to each other more than we might expect, based on what we know about their individual frequencies?
 - Is this an accidental pairing or not?
- The more data we have, the more confident we will be in our assessment of a collocation or not

We’ll look at bigrams, but techniques work for words within five words of each other, translation pairs, phrases, etc.
(Pointwise) Mutual Information

One way to see if two words are strongly connected is to compare

- the probability of the two words appearing together if they are independent \(p(w_1)p(w_2) \)
- the actual probability of the two words appearing together \(p(w_1w_2) \)

The pointwise mutual information is a measure to do this:

\[
I(w_1, w_2) = \log \frac{p(w_1w_2)}{p(w_1)p(w_2)}
\]
Pointwise Mutual Information Equation

Our probabilities \((p(w_1 w_2), p(w_1), p(w_2)) \) are all basically calculated in the same way:

\[
(2) \quad p(x) = \frac{C(x)}{N}
\]

- \(N \) is the number of words in the corpus
- The number of bigrams \(\approx \) the number of unigrams

\[
(3) \quad I(w_1, w_2) = \log \frac{p(w_1 w_2)}{p(w_1)p(w_2)}
= \log \frac{\frac{C(w_1 w_2)}{N}}{\frac{C(w_1)}{N}\frac{C(w_2)}{N}}
= \log[N\frac{C(w_1 w_2)}{C(w_1)C(w_2)}]
\]
Mutual Information example

We want to know if *Ayatollah Ruhollah* is a collocation in a data set we have:

- \(C(\text{Ayatollah}) = 42 \)
- \(C(\text{Ruhollah}) = 20 \)
- \(C(\text{AyatollahRuhollah}) = 20 \)
- \(N = 14,307,668 \)

\[(4) \quad I(\text{Ayatollah}, \text{Ruhollah}) = \log_2 \frac{20}{\frac{42}{N} \times \frac{20}{N}} = \log_2 N \frac{20}{42 \times 20} \approx 18.38 \]

To see how good a collocation this is, we need to compare it to others.
Problems for Mutual Information

The formula we have also has the following equivalencies:

\[
I(w_1, w_2) = \log \frac{p(w_1w_2)}{p(w_1)p(w_2)} = \log \frac{P(w_1|w_2)}{P(w_1)} = \log \frac{P(w_2|w_1)}{P(w_2)}
\]

Mutual information tells us how much more information we have for a word, knowing the other word.

- But a decrease in uncertainty isn’t quite right ...

A few problems:

- Sparse data: infrequent bigrams for infrequent words get high scores
- Tends to measure independence (value of 0) better than dependence
- Doesn’t account for how often the words do not appear together (M&S 1999, table 5.15)
Motivating Contingency Tables

What we can instead get at is: which bigrams are likely, out of a range of possibilities?

Looking at the Arthur Conan Doyle story *A Case of Identity*, we find the following possibilities for one particular bigram:

- *sherlock* followed by *holmes*
- *sherlock* followed by some word other than *holmes*
- some word other than *sherlock* preceding *holmes*
- two words: the first not being *sherlock*, the second not being *holmes*

These are all the relevant situations for examining this bigram
Contingency Tables

We can count up these different possibilities and put them into a contingency table (or 2x2 table)

<table>
<thead>
<tr>
<th></th>
<th>B = holmes</th>
<th>B ≠ holmes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = sherlock</td>
<td>7</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>A ≠ sherlock</td>
<td>39</td>
<td>7059</td>
<td>7098</td>
</tr>
<tr>
<td>Total</td>
<td>46</td>
<td>7059</td>
<td>7105</td>
</tr>
</tbody>
</table>

The *Total* row and *Total* column are the **marginals**

- The values in this chart are the observed frequencies \(f_o \)
Observed bigram probabilities

Because each cell indicates a bigram, divide each of the cells by the total number of bigrams (7105) to get probabilities:

<table>
<thead>
<tr>
<th></th>
<th>holmes</th>
<th>¬ holmes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>sherlock</td>
<td>0.00099</td>
<td>0.0</td>
<td>0.00099</td>
</tr>
<tr>
<td>¬ sherlock</td>
<td>0.00549</td>
<td>0.99353</td>
<td>0.99901</td>
</tr>
<tr>
<td>Total</td>
<td>0.00647</td>
<td>0.99353</td>
<td>1.0</td>
</tr>
</tbody>
</table>

The marginal probabilities indicate the probabilities for a given word, e.g., $p(\text{sherlock}) = 0.00099$ and $p(\text{holmes}) = 0.00647$.
Expected bigram probabilities

If we assumed that *sherlock* and *holmes* are independent—i.e., the probability of one is unaffected by the probability of the other—we would get the following table:

<table>
<thead>
<tr>
<th></th>
<th>holmes</th>
<th>¬ holmes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>sherlock</td>
<td>0.00647 x 0.00099</td>
<td>0.99353 x 0.00099</td>
<td>0.00099</td>
</tr>
<tr>
<td>¬ sherlock</td>
<td>0.00647 x 0.99901</td>
<td>0.99353 x 0.99901</td>
<td>0.99901</td>
</tr>
<tr>
<td>Total</td>
<td>0.00647</td>
<td>0.99353</td>
<td>1.0</td>
</tr>
</tbody>
</table>

- This is simply $p_e(w_1, w_2) = p(w_1)p(w_2)$
Expected bigram frequencies

Multiplying by 7105 (the total number of bigrams) gives us the expected number of times we should see each bigram:

<table>
<thead>
<tr>
<th></th>
<th>holmes</th>
<th>¬ holmes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>sherlock</td>
<td>0.05</td>
<td>6.95</td>
<td>7.00</td>
</tr>
<tr>
<td>¬ sherlock</td>
<td>45.5</td>
<td>7052.05</td>
<td>7098.05</td>
</tr>
<tr>
<td>Total</td>
<td>46.00</td>
<td>7059.05</td>
<td>7105.05</td>
</tr>
</tbody>
</table>

- The values in this chart are the expected frequencies \((f_e) \)
Pearson’s chi-square test

The chi-square (χ^2) test measures how far the observed values are from the expected values:

\[\chi^2 = \sum \frac{(f_o-f_e)^2}{f_e} \]

(6)

\[
\chi^2 = \frac{(7-0.05)^2}{0.05} + \frac{(0-6.95)^2}{6.95} + \frac{(39-45.5)^2}{45.5} + \frac{(7059-7052.05)^2}{7052.05}
\]

\[= 966.05 + 6.95 + 1.048 + 0.006 \]

\[= 974.05 \]

If you look this up in a table, you’ll see that it’s unlikely to be chance.

NB: The χ^2 test does not work well for rare events, i.e., $f_e < 6$.
Working with collocations

The question is:

- What significant collocations are there that start with the word *sweet*?
- Specifically, what nouns tend to co-occur after *sweet*?

What do your intuitions say?

Next time, we will work on how to calculate collocations ...