Natural Language Processing (NLP): Overview & Tools

L715/B659
Dept. of Linguistics, Indiana University
Fall 2014

What do we need NLP for?

- One hand: we intend to do NLP, i.e., automatically analyze natural language for the purposes of providing meaning (of a sort) from a text
- Other hand: use NLP tools to pre-process data, i.e., provide sentence-level grammatical information:
 - Segment sentences
 - Tokenize words
 - Part-of-speech tag words
 - Syntactically (and semantically?) parse sentences
 - Provide semantic word senses
 - Provide named entities
 - Provide language models

This kind of (pre-)processing is the focus for today

Where we’re going

We are going to focus on:

- what the general tasks are & what the uses are
- what kinds of information they generally rely on
- what tools are available

We’ll look at POS tagging, parsing, word sense assignment, named entity recognition, & semantic role labeling

- We’ll focus on English, but try to note general applicability

Many taggers/parsers have pre-built models; others can be trained on annotated data

- For now, we’ll focus on pre-built models

Wikis with useful technology information

Places you can get your own information:

- Our very own IU CL wiki, which includes some people’s experiences with various tools
 - http://icl.indiana.edu/wiki
 - Always feel free to add your own experiences to help the next person who wants to use that tool!
- ACL wiki & resources
 - ACL software registry: http://registry.dfki.de/

General NLP packages

- Stanford NLP: http://nlp.stanford.edu/software/ (see esp. the CoreNLP package)
- ClearNLP: http://www.clearnlp.com
- FreeLing: http://nlp.lsi.upc.edu/freeling/
- LingPipe: http://alias-i.com/lingpipe/
- OpenNLP: http://opennlp.apache.org/index.html
- Natural Language Toolkit (NLTK): http://www.nltk.org/
- Illinois tools: http://cogcomp.cs.illinois.edu/page/software
- DKPro: https://www.ukp.tu-darmstadt.de/research/current-projects/dkpro/
 - Also includes a text classification tool built on top of weka
Topic #1: POS Tagging

Idea: assign a part-of-speech to every word in a text

- (Supervised) Taggers work by:
 - looking up a set of appropriate tags for a word in a dictionary
 - using local context to disambiguate from among the set
- Sequence modeling (HMMs, CRFs) are thus popular

Some examples illustrating the utility of local context:
- for the man: noun or verb?
- we will man: noun or verb?
- I can put: verb base form or past?
- re-cap real quick: adjective or adverb?

Bigram or trigram tagging is quite popular
- Take L545/L645 if you want to know more

Challenges for POS tagging

- Ambiguity
 - e.g., still as noun, verb, adverb, adjective, ...
- Unknown words
 - Programs use things like suffix tries to guess at the possible POS tags for unknown words

These challenges are exacerbated in the following areas:
- Morphologically-rich languages
- Data which is not well-edited (e.g., web data)

Motivation for POS tags

What are POS tags good for in our intended downstream applications?
- First step towards knowing the meaning, e.g., for word senses (e.g., leaves)
- Help identify function words & content words (e.g., for stylometry)
- POS sequences (n-grams) may be indicative of style
 - POS n-grams approximate syntax

Note that POS tags are generally very fast to obtain & are generally accurate (for English, on well-formed data)

POS taggers

- TnT: http://www.coli.uni-saarland.de/~thorsten/tnt/
 - Trainable; models for German & English
- TreeTagger: http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
 - Trainable; models for English, German, Italian, Dutch, Spanish, Bulgarian, Russian, & French; unix, mac, PC
- Qtag: http://www.english.bham.ac.uk/staff/omason/software/qtag.html
 - Trainable; models for German & English
 - Has a variety of NLP modules
- OpenNLP: http://opennlp.sourceforge.net/
 - Models for English, German, Spanish, & Thai; Has a variety of NLP modules

Specialized POS taggers

- ACOPOST: http://acopost.sourceforge.net/
 - Trainable; integrates different technologies
 - Trainable, models for English, Arabic, Chinese, & German
- CRFTagger: http://crftagger.sourceforge.net/
 - English
- Can also use SVMTool (http://www.lsi.upc.edu/~nlp/SVMTool/) or CRF++ (http://crfpp.sourceforge.net/) for tagging sequential data, or fnTBL for classification tasks (http://www.cs.jhu.edu/~rflorian/ftbl/index.html)

Twit"
Topic #2: Parsing

Parsers attempt to build a tree, based on some grammar

- Efficiency based on many things, including the manner in which the tree is built
- They often disambiguate by using probabilities of rules

Again, take L545/L645 for more details

Constituencies & Dependencies

Rough idea of the difference:

Constituency:

```
S
  |NP  VP
  |  |  
  |  |  
  DT NN VBD NN
```

Dependency:

```
 ROOT
  the
    DT dragon
      SUBJ
        BVD breathed
          OBJ
            fire
```

Constituency parsing

Goal is to obtain phrases

- Structured prediction: dealing with embedded / recursive structures
- Parsing can be slow, but tends to be fairly accurate
 - POS tags obtained while parsing more accurate than with a standalone POS tagger

Usefulness for downstream applications:

- Identifying sequences, e.g., named entities
- Identifying complexity, e.g., depth of embedding
- Identifying particular types of constructions, e.g., relative clauses

Challenges in parsing

In addition to things like lexical ambiguity & unknown words, additional challenges include:

- Structural ambiguity: e.g., They saw the man in the park with a telescope
- Garden paths: e.g., The horse raced past the barn fell

Again, out-of-domain data poses a challenge

- Note that for morphologically-rich languages, parsing is underdeveloped and that some of the work is in the morphology

Dependency parsing

Dependency parsing is the task of assigning dependency (grammatical) relations to a sentence

- Provides quick access to semantic relations (“who did what to whom”)
- Can be done on top of constituency parsing or on its own
 - Formally, dependency parsing is simpler: assign a single head & relation for every word (single-head constraint)

Useful applications:

- Pretty close to the same set as with constituencies ...

Constituency Parsers

- LoPar: http://www.ims.uni-stuttgart.de/tcl/SOFTWARE/LoPar.html
 - Trainable; models for English & German
- BitPar: http://www.ims.uni-stuttgart.de/tcl/SOFTWARE/BiPar.html
 - Trainable; models for English & German
- Charniak & Johnson parser: http://www.cs.brown.edu/people/ec/#software
 - Trainable; mainly used for English
Topic #3: Semantics

Semantics is the study of meaning in language.

We'll break it down into:
- Lexical semantics: word meaning
- Compositional semantics: sentence meaning

and look at technology for both

WSD software

- GWSD: Unsupervised Graph-based Word Sense Disambiguation
 http://web.eecs.umich.edu/~mihalcea/downloads.html
- SenseLearner: All-Words Word Sense Disambiguation Tool
 http://web.eecs.umich.edu/~mihalcea/downloads.html
- KYOTUKB graph-based WSD
 http://ixa2.si.ehu.es/ukb/
- pyWSD: Python Implementation of Simple WSD algorithms
 https://github.com/alvations/pywsd
- Various packages from Ted Pedersen, including Senseval systems:
 http://www.d.umn.edu/~tpederse/code.html

Dependency parsers

Recent parsers, which generally include other NLP tools:
- Mate Parser: https://code.google.com/p/mate-tools/
- TurboParser: http://www.ark.cs.cmu.edu/TurboParser/
- ZPar: http://sourceforge.net/projects/zpar/

Classic dependency parsers:
- MaltParser:
 http://w3.msi.vxu.se/~nivre/research/MaltParser.html
 - Trainable; models for Swedish, English, & Chinese
- MSTParser: http://sourceforge.net/projects/mstparser
 - Trainable; has some models for English & Portuguese
- Link Grammar parser:
 http://www.abisource.com/projects/link-grammar/
 - English only

CCG parsers: http://groups.inf.ed.ac.uk/ccg/software.html
- Primarily for English, although can be trained on German CCGbank

Semantic class assignment

Word sense disambiguation (WSD): for a given word, determine its semantic class
- bank .61: They robbed a bank and took the cash.
- bank .62: They swam awhile and then rested on the bank.

Lexical resources define the senses, e.g.
- WordNet: http://wordnet.princeton.edu
- BabelNet: http://babelnet.org

Named entity recognition (NER): classify elements (words, phrases) into pre-defined entity classes
- Common categories include: PER(son), ORG(anization), LOC(ation), etc.
- May have hierarchical categories

Techniques often rely on phrase chunking & may involve using a gazetteer (external list of entities)
- From the list of general NLP tools above, Stanford, UIUC, & OpenNLP have NER modules
Semantic role labeling

Idea: The words of a sentence combine to form a meaning
- Hypothesis: the syntax and semantics can be built up in a corresponding fashion

Semantic role labeling is the task of assigning semantic roles to arguments in a sentence
- e.g., for John loves Mary:
 - (to) love is the predicate
 - John is the agent (ARG0)
 - Mary is the patient (ARG1)

Semantic role labelers
- Clear: http://www.clearlp.com
- Senna: http://ml.nec-labs.com/senna/
- UIUC: http://cogcomp.cs.illinois.edu/page/software_view/SRL
- SEMAFOR: https://code.google.com/p/semafor-semantic-parser/
- SwiRL: http://www.surdeanu.info/mihai/swirl/
- Shalmaneser: http://www.coli.uni-saarland.de/projects/salsa/shal/
- MATE: https://code.google.com/p/mate-tools/
- Turbo: http://www.ark.cs.cmu.edu/TurboParser/

Topic #4: Language modeling

Language models store lots of text in n-gram form, using it to assign probabilities to new sequences of text
- Tend to be fast & surprisingly accurate

Some packages:
- MIT Language Modeling Toolkit: https://code.google.com/p/mitlm/