Corpus Linguistics (L415/L615)

Collocations

Markus Dickinson

Department of Linguistics, Indiana University

Fall 2015
Collocations are characteristic co-occurrence patterns of two (or more) lexical items

1. Firthian definition: combinations of words that co-occur more frequently than by chance
 ▶ “You shall know a word by the company it keeps” (Firth 1957)

2. Phraseological definition: The meaning tends to be more than the sum of its parts
 ▶ “a sequence of two or more consecutive words, . . . whose exact and unambiguous meaning cannot be derived directly from the meaning or connotation of its components” (Choueka 1988)
Some examples by different definitions:

- Firth + phraseology: *couch potato*
- Firth only: *potato peeler*
- Phraseology only: *broken record*
Collocations are hard to define by intuition:
 - Corpora have been able to reveal connections previously unseen
 - Though, it may not be clear what the theoretical basis of collocations are
 - Q: how (where) do they fit into grammar?

Firthian definition is empirical \(\Rightarrow \) need test for “co-occur more frequently than by chance”
 - Significance test / information theoretic measures
Related concepts

Colligations

A **colligation** is a slightly different concept:

- Collocation of a node word with a particular class of words (e.g., determiners)

Colligations often create noise in a list of collocations

- e.g., *this house* because *this* is so common on its own, and determiners appear before nouns
- Thus, people sometimes use stop words to filter out non-collocations
Semantic prosody = “a form of meaning which is established through the proximity of a consistent series of collocates” (Louw 2000)

▶ Idea: you can tell the semantic prosody of a word by the types of words it frequently co-occurs with
 ▶ These are typically negative: e.g., peddle, ripe for, get oneself verbed

▶ This type of co-occurrence often leads to general semantic preferences
 ▶ e.g., utterly, totally, etc. typically have a feature of ‘absence or change of state’
Defining a collocation
Towards corpus-based metrics

Collocations are expressions of two or more words that are in some sense conventionalized as a group

- strong tea (cf. powerful tea)
- international best practice
- kick the bucket

Importance of the context: “You shall know a word by a company it keeps” (Firth 1957)

- There are lexical properties that more general syntactic properties do not capture

This slide and the next 3 adapted from Manning and Schütze (1999), Foundations of Statistical Natural Language Processing
Prototypical collocations

Prototypically, collocations meet the following criteria:

- Non-compositional: meaning of *kick the bucket* not composed of meaning of parts
- Non-substitutable: *orange hair* just as accurate as *red hair*, but some don’t say it
- Non-modifiable: often we cannot modify a collocation, even though we normally could modify one of those words: ??*kick the red bucket*
Compositionality tests

Previous properties may be hard to verify with corpus data

(At least) two tests we can use with corpora:

▶ Is the collocation translated word-by-word into another language?
 ▶ e.g., Collocation *make a decision* is not translated literally into French

▶ Do the two words co-occur more frequently together than we would otherwise expect?
 ▶ e.g., *of the* is frequent, but both words are frequent, so we might expect this
Kinds of collocations

Calculations ideally take into account variability:

- Light verbs: verbs convey very little meaning but must be the right one:
 - *make*|*take a decision, take|*make a walk
- Phrasal verbs: main verb and particle combination, often translated as a single word:
 - *to tell off, to call up*
- Proper nouns: slightly different than others, but each refers to a single idea (e.g., Brooks Brothers)
- Terminological expressions: technical terms that form a unit (e.g., hydraulic oil filter)
- Syntactically adaptable expressions: bite|biting|bit the dust, take leave of his|her|your senses
- Non-adjacent collocations: faint (stale|apricot) smell
Ideas for calculating collocations

We want to tell if two words occur together more than by chance, meaning we should examine:

- Observed frequency of the two words together
- Expected frequency of the two words together
 - This if often derived from observed frequencies of the individual words
- Metrics for combining observed & expected frequencies
 - e.g., \(t = \frac{\text{observed} - \text{expected}}{\sqrt{\text{observed}}} \) (from Gries 2009)
Calculating collocations

Simplest approach: use frequency counts

- Two words appearing together a lot are a collocation

The problem is that we get lots of uninteresting pairs of function words (M&S 1999, table 5.1)

<table>
<thead>
<tr>
<th>C(w₁, w₂)</th>
<th>w₁</th>
<th>w₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>80871</td>
<td>of</td>
<td>the</td>
</tr>
<tr>
<td>58841</td>
<td>in</td>
<td>the</td>
</tr>
<tr>
<td>26430</td>
<td>to</td>
<td>the</td>
</tr>
<tr>
<td>21842</td>
<td>on</td>
<td>the</td>
</tr>
</tbody>
</table>

(Slides 12–24 are based on Manning & Schütze (M&S) 1999)
To remove frequent pairings which are uninteresting, we can use a POS filter (Justeson and Katz 1995)

- Only examine word sequences which fit a particular part-of-speech pattern:
 A N, N N, A A N, A N N, N A N, N N N, N P N
 A N linear function
 N A N mean squared error
 N P N degrees of freedom

- Crucially, all other sequences are removed
 P D of the
 MV V has been
POS filtering (2)

Some results after tag filtering (M&S 1999, table 5.3)

<table>
<thead>
<tr>
<th>C(w₁, w₂)</th>
<th>w₁</th>
<th>w₂</th>
<th>Tag Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>11487</td>
<td>New</td>
<td>York</td>
<td>A N</td>
</tr>
<tr>
<td>7261</td>
<td>United</td>
<td>States</td>
<td>A N</td>
</tr>
<tr>
<td>5412</td>
<td>Los</td>
<td>Angeles</td>
<td>N N</td>
</tr>
<tr>
<td>3301</td>
<td>last</td>
<td>year</td>
<td>A N</td>
</tr>
</tbody>
</table>

⇒ Fairly simple, but surprisingly effective

- Needs to be refined to handle verb-particle collocations
- Kind of inconvenient to write out patterns you want
(Pointwise) Mutual Information

Pointwise mutual information (PMI) compares:

- Observed: the actual probability of the two words appearing together ($p(w_1 w_2)$)
- Expected: the probability of the two words appearing together if they are independent ($p(w_1)p(w_2)$)

The pointwise mutual information is a measure to do this:

\[
I(w_1, w_2) = \log \frac{p(w_1 w_2)}{p(w_1)p(w_2)}
\]

- The higher the value, the more surprising it is
Pointwise Mutual Information Equation

Probabilities \(p(w_1 w_2), p(w_1), p(w_2)\) calculated as:

\[
(2) \quad p(x) = \frac{C(x)}{N}
\]

- \(N\) is the number of words in the corpus
- The number of bigrams \(\approx\) the number of unigrams

\[
(3) \quad I(w_1, w_2) = \log \frac{p(w_1 w_2)}{p(w_1) p(w_2)}
\]

\[
= \log \frac{\frac{C(w_1 w_2)}{N}}{\frac{C(w_1)}{N} \frac{C(w_2)}{N}}
\]

\[
= \log[N \frac{C(w_1 w_2)}{C(w_1) C(w_2)}]
\]
Mutual Information example

We want to know if *Ayatollah Ruhollah* is a collocation in a data set we have:

- $C(\text{Ayatollah}) = 42$
- $C(\text{Ruhollah}) = 20$
- $C(\text{Ayatollah Ruhollah}) = 20$
- $N = 14,307,668$

(4) $I(\text{Ayatollah}, \text{Ruhollah}) = \log_2 \frac{20}{\frac{42}{N} \times \frac{20}{N}} = \log_2 N \frac{20}{42 \times 20} \approx 18.38$

To see how good a collocation this is, we need to compare it to others
Problems for Mutual Information

A few problems:

- Sparse data: infrequent bigrams for infrequent words get high scores
- Tends to measure independence (value of 0) better than dependence
- Doesn’t account for how often the words do not appear together (M&S 1999, table 5.15)
Motivating Contingency Tables

What we can instead get at is: which bigrams are likely, out of a range of possibilities?

Looking at the Arthur Conan Doyle story *A Case of Identity*, we find the following possibilities for one particular bigram:

- *sherlock* followed by *holmes*
- *sherlock* followed by some word other than *holmes*
- some word other than *sherlock* preceding *holmes*
- two words: the first not being *sherlock*, the second not being *holmes*
We can count up these different possibilities and put them into a contingency table (or 2x2 table)

<table>
<thead>
<tr>
<th></th>
<th>B = holmes</th>
<th>B ≠ holmes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = sherlock</td>
<td>7</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>A ≠ sherlock</td>
<td>39</td>
<td>7059</td>
<td>7098</td>
</tr>
<tr>
<td>Total</td>
<td>46</td>
<td>7059</td>
<td>7105</td>
</tr>
</tbody>
</table>

The *Total* row and *Total* column are the **marginals**

- Values in this chart are the observed frequencies (f_o)
Observed bigram probabilities

Each cell indicates a bigram: divide each cell by total number of bigrams (7105) to get probabilities:

<table>
<thead>
<tr>
<th></th>
<th>holmes</th>
<th>¬ holmes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>sherlock</td>
<td>0.00099</td>
<td>0.0</td>
<td>0.00099</td>
</tr>
<tr>
<td>¬ sherlock</td>
<td>0.00549</td>
<td>0.99353</td>
<td>0.99901</td>
</tr>
<tr>
<td>Total</td>
<td>0.00647</td>
<td>0.99353</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Marginal probabilities indicate probabilities for a given word

▶ e.g., \(p(\text{sherlock}) = 0.00099 \) and \(p(\text{holmes}) = 0.00647 \)
Expected bigram probabilities

Assuming *sherlock* & *holmes* are independent results in:

<table>
<thead>
<tr>
<th></th>
<th>holmes</th>
<th>¬ holmes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>sherlock</td>
<td>0.00647 x 0.00099</td>
<td>0.99353 x 0.00099</td>
<td>0.00099</td>
</tr>
<tr>
<td>¬ sherlock</td>
<td>0.00647 x 0.99901</td>
<td>0.99353 x 0.99901</td>
<td>0.99901</td>
</tr>
<tr>
<td>Total</td>
<td>0.00647</td>
<td>0.99353</td>
<td>1.0</td>
</tr>
</tbody>
</table>

- This is simply $p_e(w_1, w_2) = p(w_1)p(w_2)$
Expected bigram frequencies

Multiplying by 7105 (the total number of bigrams) gives us the expected number of times we should see each bigram:

<table>
<thead>
<tr>
<th></th>
<th>holmes</th>
<th>¬ holmes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>sherlock</td>
<td>0.05</td>
<td>6.95</td>
<td>7</td>
</tr>
<tr>
<td>¬ sherlock</td>
<td>45.5</td>
<td>7052.05</td>
<td>7098</td>
</tr>
<tr>
<td>Total</td>
<td>46</td>
<td>7059</td>
<td>7105</td>
</tr>
</tbody>
</table>

- Values in this chart are expected frequencies \((f_e)\)
Pearson’s chi-square test

The chi-square (χ^2) test measures how far the observed values are from the expected values:

\[\chi^2 = \sum \frac{(f_o - f_e)^2}{f_e} \]

\[\chi^2 = \frac{(7-0.05)^2}{0.05} + \frac{(0-6.95)^2}{6.95} + \frac{(39-45.5)^2}{45.5} + \frac{(7059-7052.05)^2}{7052.05} \]

\[= 966.05 + 6.95 + 1.048 + 0.006 \]

\[= 974.05 \]

Looking this up in a table shows it’s unlikely to be chance

- χ^2 test does not work well for rare events, i.e., $f_e \leq 5$
- Other tests can be employed using the same tables
Gries (2009) lists some other points to consider:

- **Fertility**: # of unique types associate with a word
- **Lexical gravity**: window-based approaches that find the most informative contextual slots
- **Multi-word collocations**: breaking down the string into most informative units for expected frequencies
- **Variable n**: bottom-up approaches to defining the size of n for n-gram collocates
- **Discontinuous n-grams**