Corpus Linguistics (L415/L615)
Collocations, part 2: Practicalities

Markus Dickinson
Department of Linguistics, Indiana University
Fall 2015

Working with collocations

One question:
- What significant collocations are there that start with the word *sweet*?
- Specifically, what nouns tend to co-occur after *sweet*?

What do your intuitions say?

Calculating collocations

We have various options for calculating collocations

- Web interfaces
- Write our own program
- UCS Toolkit (http://www.collocations.de)

Web interface
BYU interface

Can work with an online concordancer of the BNC, http://corpus.byu.edu/bnc/

1. Enter *sweet* in the Search String box.
2. On the left side, check Compare Words

Some other exercises:
- Search for *Christmas*. What is the most frequent word that collocates with it?
- What happens when you change the metric?
- What words collocate with *potato*? What words collocate with *couch potato*?
- Search for *Christmas* and *tree* in a 3-word window. Are there any occurrences where the words are not adjacent?

Perl scripting

We could write a Perl script to do the following:
1. Read in a corpus file (could be changed to read over a directory of files, if need be)
2. Store unigram and bigram counts as it reads the file in
3. Loop over all bigrams
4. For each bigram, calculate some metric (e.g., pointwise mutual information)

Web interface
BNCWeb

After searching for *sweet*, let’s play with the Collocations options ...

- Search for *Christmas*. What is the most frequent word that collocates with it?
- What happens when you change the metric?
- What words collocate with *potato*? What words collocate with *couch potato*?
- Search for *Christmas* and *tree* in a 3-word window. Are there any occurrences where the words are not adjacent?
N-grams Statistics Package (NSP)

“The Ngram Statistics Package (NSP) is a suite of programs that aids in analyzing Ngrams in text files.” (from README)

Two main files:
- count.pl: takes regular text files and generates a list of ngrams & their frequencies
- statistic.pl: takes ngram lists (output from count.pl) & runs a measure of association

Some example cases uses found here:
http://search.cpan.org/~tpederse/Text-NSP/doc/USAGE.pod
- See also the README which comes with the software

NSP package

Counting: count.pl

leaves-of-grass.txt is a plain text file (containing Walt Whitman’s Leaves of Grass)

Basic bigram counting:
> count.pl leaves.cnt leaves-of-grass.txt
> more leaves.cnt
152454
,<>the<>1290 18083 8976
of<>the<>1247 4237 8976
I<>I<>1853 18083 2933
,<>The<>978 18083 1309
,<>and<>831 18083 4866
in<>the<>569 1769 8976

You can also change the window size with window

NSP

Counting: count.pl

Count bigrams occurring 5 or more times & storing a histogram
> count.pl --ngram 3 leaves.tri leaves-of-grass.txt
> more leaves.tri
152453
,<>and<>the<>198 18083 4866 8976 831 1276 483
,<>I<>see<>171 18083 2933 394 1653 185 291
I<>see<>the<>117 2933 394 8976 291 365 132
I<>do<>not<>71 2933 217 780 75 173 129

NSP

Counting: statistic.pl

Score bigram lists: log-likelihood ratios
- Note that we can restrict output by score or frequency
> statistic.pl --score 6.00 --frequency 5 ll.pm \ leaves-5.hist leaves-of-grass.txt

> more leaves-5.hist
152454
Number of n-grams ... 1 time(s) = 60497 (39.68 percent)
Number of n-grams ... 2 time(s) = 8524 (11.18 percent)
Number of n-grams ... 3 time(s) = 3079 (6.06 percent)
Number of n-grams ... 4 time(s) = 1443 (3.79 percent)

A list of stop words to exclude can be given and indicated with -stop

NSP

Collocations: statistic.pl

Score bigram lists: log-likelihood ratios
- Note that we can restrict output by score or frequency
> statistic.pl --score 6.00 --frequency 5 ll.pm \ leaves-5.hist leaves-of-grass.txt

> more leaves.ll
152454
,<>The<>1 2816.6039 978 18083 1309
of<>the<>2 2417.4401 1247 4237 8976
I<>see<>3 1879.5817 291 2933 365
,<>And<>4 1416.4393 442 18083 537
...
Corpus Linguistics
Collocations, part 2:
Practicalities

Available bigram measures:
- Dice Coefficient (dice)
- Fisher's exact test - left sided (left)
- Fisher's exact test - right sided (right)
- Fisher's twotailed test - right sided (twotailed)
- Jaccard Coefficient (jaccard)
- Log-likelihood ratio (ll)
- Mutual Information (tmi)
- Odds Ratio (odds)
- Pointwise Mutual Information (pmi)
- Phi Coefficient (phi)
- Pearson's Chi Squared Test (x2)
- Poisson Stirling Measure (ps)
- T-score (tscore)

The available trigram/4-gram measures are:
- Log-likelihood ratio (ll)
- Mutual Information (tmi)
- Pointwise Mutual Information (pmi)
- Poisson Stirling Measure (ps)

The only available 4-gram measure is:
- Log-likelihood ratio (ll)

Any of these measures can be used as follows, where XXXX is the name of the measure:
- statistic.pl XXXX output.txt input.txt

Comparing methods: rank.pl

rank.pl "computes the Spearman's rank correlation coefficient on the Ngrams that are common to both files" (from README)
- Give it two collocation files to compare
Here, we compare LL and PMI measures to a precision of 3 digits:
- rank.pl -precision 3 leaves.dice leaves.ll
Rank correlation coefficient = 0.487
Another nice package is the UCS toolkit
 ▶ http://www.collocations.de/software.html

There are interfaces for both Perl and R
 ▶ The R interface provides more graphical output
 ▶ Tutorials & thorough documentation are available for both