Smoothing

Definitions

- N-gram matrix for any given training corpus is **sparse**
 - i.e., not all n-grams will be present
 - MLE produces bad estimates when the counts are small
- **Smoothing** = re-evaluating zero & small probabilities; assigning very small probabilities for zero n-grams
 - If non-occurring n-grams receive small probabilities, the probability mass needs to be redistributed!
- Smoothing also sometimes called **discounting**

Types vs. Tokens

- We’ve seen this before:
 - **Token**: single item
 - **Type**: abstract class of items
- Example: words in text
 - Tokens: the, man, with, the, hat # of tokens = 5
 - Types: the, man, with, hat # of types = 4

Basics of n-grams

n-grams are used to model language, capturing some degree of grammatical properties

- The probability of a word based on its history:
 1. \(P(w_0|w_1...w_{n-1}) \)
- n-gram probabilities are estimated as follows
 2. \(P(w_0|w_1...w_{n-1}) = \frac{P(w_0...w_n)}{P(w_1...w_{n-1})} \)
- To avoid data sparsity issues, bigrams and trigrams are commonly used
- We can use maximum likelihood estimation (MLE) to obtain basic probabilities:
 3. \(P(w_0|w_1...w_{n-1}) = \frac{C(w_0...w_n)}{C(w_1...w_{n-1})} \)

But MLE probabilities do nothing to handle unseen data

Basic Techniques

An overview of what we’ll look at:

- Add-One Smoothing (& variations)
 - Laplace’s, Lidstone’s, & Jeffreys-Perks laws
- Deleted estimation: validate estimates from one part of corpus with another part
- Witten-Bell smoothing: use probabilities of seeing events for the first time
- Good-Turing estimation: use ratios between n-grams occurring \(n+1 \) and \(n \) times

Following Manning and Schütze, we’ll use n-gram language modeling as our example

Add-One Smoothing

Idea: pretend that non-existent bigrams are there once

- To make the model more just: assume that for each bigram we also add one to the count

 ... This turns out not to be a very good estimator
Laplace's Law

- **Unigram probabilities:**
 - \(N \) = number of tokens
 - \(C(x) \) = frequency of \(x \)
 - \(V \) = vocabulary size; number of types
- **Standard probability for word \(w_x \):**
 - \(P(w_x) = \frac{C(w_x)}{N} \)
- **Adjusted count:**
 - \(C'(w_x) = (C(w_x) + 1) \frac{N}{N+V} \)
 - \(p'(w_x) \): estimated probability
 - \(p'(w_x) = \frac{(C(w_x) + 1)^{\frac{1}{N+V}}}{C(w_x)} \)

Add-One Smoothing

Test Corpus: Windows Haiku Corpus

- Corpus: 16 haikus, 253 tokens, 165 words
 - Haiku: Japanese poem with 17 syllables (mora); 5 in first line, 7 in second, 5 in third
 - Windows NT crash’d.
 - I am the Blue Screen of Death.
 - No-one hears your screams.
 - Yesterday it work’d.
 - Today it is not working.
 - Windows is like that.
 - Three things are certain:
 - Death, taxes and lost data.
 - Guess which has occurred.

Test Corpus: Add-One Smoothing

<table>
<thead>
<tr>
<th>word</th>
<th>freq.</th>
<th>unsmoothed: (\frac{C(w)}{N})</th>
<th>add-one: (\frac{C(w)+1}{N+V})</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>35</td>
<td>0.1383</td>
<td>0.0860</td>
</tr>
<tr>
<td>.</td>
<td>8</td>
<td>0.0316</td>
<td>0.0215</td>
</tr>
<tr>
<td>the</td>
<td>7</td>
<td>0.0277</td>
<td>0.0191</td>
</tr>
<tr>
<td>The</td>
<td>4</td>
<td>0.0158</td>
<td>0.0119</td>
</tr>
<tr>
<td>that</td>
<td>3</td>
<td>0.0119</td>
<td>0.0095</td>
</tr>
<tr>
<td>on</td>
<td>2</td>
<td>0.0079</td>
<td>0.0072</td>
</tr>
<tr>
<td>We</td>
<td>1</td>
<td>0.0040</td>
<td>0.0048</td>
</tr>
<tr>
<td>operator</td>
<td>0</td>
<td>0.0000</td>
<td>0.0024</td>
</tr>
</tbody>
</table>

Bigrams Example

<table>
<thead>
<tr>
<th>bigram</th>
<th>freq. (w_{n-1})</th>
<th>freq. (w_n)</th>
<th>unsmoothed: (\frac{C(w_{n-1}, w_n)}{C(w_{n-1})})</th>
<th>add-one: (\frac{C(w_{n-1}, w_n)+1}{C(w_{n-1})+V})</th>
</tr>
</thead>
<tbody>
<tr>
<td>. END</td>
<td>35</td>
<td>35</td>
<td>1.0000</td>
<td>0.1800</td>
</tr>
<tr>
<td>START The</td>
<td>3</td>
<td>35</td>
<td>0.0857</td>
<td>0.0200</td>
</tr>
<tr>
<td>START You</td>
<td>2</td>
<td>35</td>
<td>0.0571</td>
<td>0.0150</td>
</tr>
<tr>
<td>is not</td>
<td>2</td>
<td>7</td>
<td>0.2857</td>
<td>0.0174</td>
</tr>
<tr>
<td>Your are</td>
<td>1</td>
<td>2</td>
<td>0.5000</td>
<td>0.0120</td>
</tr>
<tr>
<td>You bring</td>
<td>1</td>
<td>3</td>
<td>0.3333</td>
<td>0.0119</td>
</tr>
<tr>
<td>not found</td>
<td>1</td>
<td>4</td>
<td>0.2500</td>
<td>0.0118</td>
</tr>
<tr>
<td>is the</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0.0058</td>
</tr>
<tr>
<td>This system</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0.0060</td>
</tr>
</tbody>
</table>

Add-One Smoothing: Bigrams

- \(P(w_n | w_{n-1}) = \frac{C(w_{n-1}, w_n)}{C(w_{n-1})} \)
- \(p'(w_n | w_{n-1}) = \frac{C(w_{n-1}, w_n)+1}{C(w_{n-1})+V} \)

Lidstone’s & Jeffreys-Perks Laws

Because Laplace’s law overestimates zero events, variations were created:

- **Lidstone’s law:** instead of adding one, add some smaller value \(\lambda \)
 - \(P(w_1...w_n) = \frac{C(w_1...w_n)+\lambda}{N+\lambda V} \)

- **Jeffreys-Perks law:** set \(\lambda \) to be \(\frac{1}{2} \) (the expectation of maximized MLE):
 - \(P(w_1...w_n) = \frac{C(w_1...w_n)+\frac{1}{2}}{N+\frac{1}{2} V} \)

Problems: How do we guess \(\lambda ? \) And still not good for low frequency \(n \)-grams . . .
Towards Deleted Estimation

Held-Out Estimation

To get an idea as to whether a smoothing technique is effective, we can use held-out estimation.

- Split the data into training data and held-out data
- Use the held-out data to see how good the training estimates are

Using bigrams as an example:

- \(N_r \) bigrams with frequency \(r \) in the training data
- \(T_r \): how often all these bigrams together occur in the held-out data
- Average frequency in held-out data is thus \(\frac{T_r}{N} \)

Held-Out Estimation keeps the held-out data separate from the training data

- But what if we split the training data in half?
 1. Train on one half and validate on the other
 2. Then, switch the training and validation portions
- With both of these estimates, we average them to obtain more reliable estimates

\[
(6) \quad \rho_{del}(w_1w_2) = \frac{T_{r_1} + T_{r_2}}{N(N + T) + T_{r_1} + T_{r_2}}
\]

Deleted Estimation turns out to be quite good ... but not for low frequency \(n \)-grams

- Overestimates unseen objects & underestimates one-time objects
 - The number of unseen objects is not linear, but deleted estimation assumes it is
 - As the size of the data increases, there are generally less unseen \(n \)-grams
 - Smaller training sets lead to more unseen events in the held-out data
- Deleted estimation assumes the probability of an object seen \(r \) times in \(\frac{N}{2} \) data is double one seen \(r \) times in \(N \) data

Witten-Bell Discounting

Problems with Add-One Smoothing:

- Add-one smoothing leads to sharp changes in probabilities
- Too much probability mass goes to unseen events

Intuition between Witten-Bell: unseen events are ones that have not happened yet

- Probability of this event can be modeled by probability of seeing it for the first time

First Time Probability

How do we estimate probability of an \(N \)-gram occurring for the first time?

- Count number of times of seeing an \(N \)-gram for the first time in training corpus
- Think of corpus as series of events: one event for each token and one event for each new type
 - e.g. unigrams:
 corpus: a man with a hat
event: a new man new with a hat...
 - Number of events: \(N + T \)
Witten-Bell Probabilities

- **Total** probability mass for unseen events:
 \[\sum_{x: C(w_x) = 0} p^*(w_x) = \frac{T}{N+T} \]
- Probability for **one** unseen unigram:
 \[p^*(w_x) = \frac{T}{Z(N+T)} \]
 Divide total prob. mass for all unseen events by number of all unseen unigrams: \(Z = \sum_{i} C(w_i) \leq 1 \)
- **Discount** total probability mass for unseen events from other events:
 \[p^*(w_x) = \frac{C(w_x)}{N+T} \] \text{for} \(C(w_x) > 0 \)
- **Alternatively**: **smoothed counts**:
 \[C^*(w_x) = \begin{cases} \frac{T}{Z(N+T)} & \text{if} \; C(w_x) = 0 \\ \frac{C(w_x)}{N+T} & \text{if} \; C(w_x) > 0 \end{cases} \]

T(w) and Z(w) from Haikus

- \(Z(w) \): number of unseen bigrams starting with \(w \)
- \(V \): complete number of bigrams (types)

\[
Z(w) = V - T(w) = 165 - T(w)
\]

<table>
<thead>
<tr>
<th>word</th>
<th>(T(w))</th>
<th>(Z(w))</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>1</td>
<td>164</td>
</tr>
<tr>
<td>START</td>
<td>13</td>
<td>152</td>
</tr>
<tr>
<td>is</td>
<td>6</td>
<td>159</td>
</tr>
<tr>
<td>Your</td>
<td>2</td>
<td>163</td>
</tr>
<tr>
<td>You</td>
<td>2</td>
<td>163</td>
</tr>
<tr>
<td>not</td>
<td>4</td>
<td>161</td>
</tr>
<tr>
<td>This</td>
<td>2</td>
<td>163</td>
</tr>
</tbody>
</table>

Haiku Probabilities

<table>
<thead>
<tr>
<th>bigram</th>
<th>unsmoothed</th>
<th>add-one</th>
<th>Witten-Bell</th>
</tr>
</thead>
<tbody>
<tr>
<td>. END</td>
<td>1.0000</td>
<td>0.1800</td>
<td>0.9722</td>
</tr>
<tr>
<td>START The</td>
<td>0.0857</td>
<td>0.0200</td>
<td>0.0625</td>
</tr>
<tr>
<td>START You</td>
<td>0.0571</td>
<td>0.0150</td>
<td>0.0417</td>
</tr>
<tr>
<td>is not</td>
<td>0.2857</td>
<td>0.0174</td>
<td>0.1538</td>
</tr>
<tr>
<td>Your ire</td>
<td>0.5000</td>
<td>0.0120</td>
<td>0.2500</td>
</tr>
<tr>
<td>You bring</td>
<td>0.3333</td>
<td>0.0119</td>
<td>0.2000</td>
</tr>
<tr>
<td>not found</td>
<td>0.2500</td>
<td>0.0118</td>
<td>0.1250</td>
</tr>
<tr>
<td>is the</td>
<td>0</td>
<td>0.0058</td>
<td>0.0029</td>
</tr>
<tr>
<td>This system</td>
<td>0</td>
<td>0.0060</td>
<td>0.0031</td>
</tr>
</tbody>
</table>

Good-Turing Smoothing

Idea: re-estimate probability mass assigned to \(n \)-grams with zero counts
- Done by looking at probability mass of **all** \(n \)-grams with count 1
- Based on assumption of binomial distribution

Idea broken down:
- Create classes \(N_c \) of \(n \)-grams which occur \(c \) times
- Size of class \(N_c \) is the frequency of frequency \(c \)

This works well for \(n \)-grams

Witten-Bell Smoothed Bigrams

Type counts are conditioned on previous word: use probability of bigram **starting with previous word**
- **\(T(w_x) \)**: number of bigrams starting with \(w_x \)

Zero-count events:
- **Total prob. mass**:
 \[\sum_{i: C(w_i) = 0} p^*(w_i | w_{i-1}) = \frac{T(w_{i-1})}{N+1} \]
- **\(p^*(w_i | w_{i-1}) = \frac{T(w_i)}{Z(w_{i-1})(N+1)} \)** \text{if} \(C(w_i) = 0 \)
- **\(Z(w_{i-1}) = \sum_{i: C(w_i) = 0} 1 \)**

Non-zero-count events:
- **\(p^*(w_i | w_{i-1}) = \frac{C(w_i | w_{i-1})}{N+1} \)** \text{if} \(C(w_i | w_{i-1}) > 0 \)
- **\(N = C(w_{i-1}) \)**
Good-Turing Smoothing (3)

- Problem: for highest count c, $N_{c+1} = 0$!!!
 - i.e. $c^* = (c + 1) \frac{N_{c+1}}{N_{c}} = (c + 1) \frac{0}{N_{c}} = 0$
- Solution: discount only for small counts $c \leq k$ (e.g. $k = 5$)
 - $c^* = c$ for $c > k$
- New discounting:
 $$c^* = \frac{(c+1)N_{c+1}}{N_c + (k+1)N_{k+1}}$$
 for $1 \leq c \leq k$

Haiku Bigrams

- G-T = $\frac{C(w_{i-2}w_{i-1}w_i)}{C(w_{i-1})}$
- $k = 3$

<table>
<thead>
<tr>
<th>bigram</th>
<th>count</th>
<th>orig.</th>
<th>add-1</th>
<th>W-B</th>
<th>G-T</th>
</tr>
</thead>
<tbody>
<tr>
<td>. END</td>
<td>35</td>
<td>1.0000</td>
<td>0.1800</td>
<td>0.9722</td>
<td>1.0000</td>
</tr>
<tr>
<td>START The</td>
<td>3</td>
<td>0.0857</td>
<td>0.0200</td>
<td>0.0625</td>
<td>0.0857</td>
</tr>
<tr>
<td>START You</td>
<td>2</td>
<td>0.0571</td>
<td>0.0150</td>
<td>0.0417</td>
<td>0.0122</td>
</tr>
<tr>
<td>is not</td>
<td>2</td>
<td>0.2857</td>
<td>0.0174</td>
<td>0.1538</td>
<td>0.1837</td>
</tr>
<tr>
<td>Your ire</td>
<td>1</td>
<td>0.5000</td>
<td>0.0120</td>
<td>0.2500</td>
<td>0.0297</td>
</tr>
<tr>
<td>You bring</td>
<td>1</td>
<td>0.3333</td>
<td>0.0119</td>
<td>0.2000</td>
<td>0.0198</td>
</tr>
<tr>
<td>not found</td>
<td>1</td>
<td>0.2500</td>
<td>0.0118</td>
<td>0.1250</td>
<td>0.0148</td>
</tr>
<tr>
<td>is the</td>
<td>0</td>
<td>0.00058</td>
<td>0.0029</td>
<td>0.0012</td>
<td></td>
</tr>
<tr>
<td>This system</td>
<td>0</td>
<td>0.0060</td>
<td>0.0031</td>
<td>0.0044</td>
<td></td>
</tr>
</tbody>
</table>

Linear Interpolation

Simple linear interpolation

- Simple linear interpolation involves mixing different pieces of information to derive a probability
- Called deleted interpolation with subset relations (e.g., bigrams and unigrams are subsets of trigrams)

$$P(w_i | w_{i-2}w_{i-1}) = \lambda_1 P(w_i | w_{i-1}) + \lambda_2 P(w_i | w_{i-2}w_{i-1}) + \lambda_3 P(w_i)$$

- $\sum \lambda_i = 1$
- $0 \leq \lambda_i \leq 1$

Every trigram probability is a linear combination of the focus word's trigram, bigram, and unigram.
- Use EM algorithm on held-out data to calculate λ values

Equivalence bins

To overcome the sparse data problem, λ's are calculated by putting them into equivalence bins

- One method (Chen and Goodman 1996) bases the bins on the number of different words which an $n - 1$-gram has following it

$$\frac{C(w_i \mid w_{i-1})}{|W; C(w_i \mid w_{i-1}) = 0|}$$

- $w_i : C(w_i \ldots w_i) > 0$: the set of w_i such that the trigram exists
- $great deal$ occurs 178 times, with 36 different words after it: average count = 4.94
- of that occurs 178 times, with 115 different words after it: 1.55

- These histories will thus prompt different λ values