N-grams

L545
Dept. of Linguistics, Indiana University
Spring 2016

N-grams: Motivation

An **n-gram** is a stretch of text n words long

- Approximation of language: n-grams tells us something about language, but doesn’t capture structure
- Efficient: finding and using every, e.g., two-word collocation in a text is quick and easy to do

N-grams can help in a variety of NLP applications:

- Word prediction
- Context-sensitive spelling correction
- Machine Translation post-editing
- ...

We are interested in how n-grams capture local properties of grammar

Corpus-based NLP

Corpus (pl. corpora) = a computer-readable collection of text and/or speech, often with annotations

- Use corpora to gather probabilities & other information about language use
 - **Training data**: data used to gather prior information
 - **Testing data**: data used to test method accuracy
- A “word” may refer to:
 - **Type**: distinct word (e.g., like)
 - **Token**: distinct occurrence of a word (e.g., the type like might have 20,000 token occurrences in a corpus)

Simple n-grams

Let’s assume we want to predict the next word, based on the previous context of *The quick brown fox jumped*

- Goal: find the likelihood of w_n being the next word, given that we’ve seen $w_1, ..., w_{n-1}$
 - This is: $P(w_n|w_1, ..., w_{n-1})$

In general, for w_n, we are concerned with:

1. $P(w_1, ..., w_n) = P(w_1)P(w_2|w_1)...P(w_n|w_1, ..., w_{n-1})$
2. $P(w_1, ..., w_n) = P(w_1|START)P(w_2|w_1)...P(w_n|w_1, ..., w_{n-1})$

Issues:

- Very specific n-grams that may never occur in training
- Huge number of potential n-grams
- Missed generalizations: often local context is sufficient to predict a word or disambiguate the usage of a word

Unigrams

Approximate these probabilities to n-grams, for a given n

1. **Unigrams ($n = 1$):**
2. Easy to calculate, but lack contextual information
3. The quick brown fox jumped
 - We would like to say that over has a higher probability in this context than lazy does

Morphosyntax

We just finished talking about morphology (cf. words)

- And pretty soon we’re going to discuss syntax (cf. sentences)

In between, we’ll handle **words in context**

- Today: n-gram language modeling (bird’s-eye view)
- Next time: POS tagging (emphasis on rule-based techniques)

Both of these topics involve approximating grammar

- Both topics are covered in more detail in L645
The states in the FSA are words.

Problem = \[P(\text{The quick brown fox jumped over the lazy dog}) \]

Probabilities are generally small, so log probabilities are used.

Wider context: Generally, trigrams are still short enough that we will have enough data to gather accurate probabilities.

A bigram model is also called a first-order Markov model.

- first-order because it has one element of memory (one token in the past)
- Markov models are essentially weighted FSAs—i.e., the arcs between states have probabilities
 - The states in the FSA are words

More on Markov models when we hit POS tagging...

Bigrams

Bigrams \((n = 2)\) give context & are easy to calculate:

\[
\begin{align*}
(4) \quad P(w_0, w_1, \ldots, w_{n-1}) &= P(w_0 | w_{n-1}) \\
(5) \quad P(\text{over} | \text{The, quick, brown, fox, jumped}) &= P(\text{over} | \text{jumped})
\end{align*}
\]

The probability of a sentence:

\[
(6) \quad P(w_1, \ldots, w_n) = P(w_1 | \text{START})P(w_2 | w_1)P(w_3 | w_2) \ldots P(w_n | w_{n-1})
\]

Bigram example

What is the probability of seeing the sentence *The quick brown fox jumped over the lazy dog*?

\[
(7) \quad P(\text{The quick brown fox jumped over the lazy dog}) = P(\text{The} | \text{START})P(\text{quick} | \text{The})P(\text{brown} | \text{quick}) \ldots P(\text{dog} | \text{lazy})
\]

- Probabilities are generally small, so log probabilities are often used

Q: Does this favor shorter sentences?

- A: Yes, but it also depends upon \(P(\text{END} | \text{lastword})\)

Training n-gram models

Go through corpus and calculate relative frequencies:

\[
\begin{align*}
(8) \quad P(w_0, w_1, \ldots, w_n) &= \frac{C(w_0, w_1 \ldots, w_n)}{C(w_0, w_1 \ldots, w_{n-1})} \\
(9) \quad P(w_0, w_1, \ldots, w_n) &= \frac{C(w_0, w_1, w_2 \ldots, w_n)}{C(w_0, w_1, w_2 \ldots, w_{n-1})}
\end{align*}
\]

This technique of gathering probabilities from a training corpus is called maximum likelihood estimation (MLE).

Trigrams

Trigrams \((n = 3)\) encode more context.

- Wider context: \(P(\text{know} | \text{did, he}) \) vs. \(P(\text{know} | \text{he})\)
- Generally, trigrams are still short enough that we will have enough data to gather accurate probabilities

Smoothing: Motivation

Assume: a bigram model has been trained on a good corpus (i.e., learned MLE bigram probabilities)

- It won't have seen every possible bigram:
 - lickety split is a possible English bigram, but it may not be in the corpus
- Problem = data sparsity → zero probability bigrams that are actual possible bigrams in the language

Smoothing techniques account for this:

- Adjust probabilities to account for unseen data
- Make zero probabilities non-zero
Language modeling: comments

Note a few things:
- Smoothing shows that the goal of n-gram language modeling is to be robust
 - vs. our general approach this semester of defining what is and what is not a part of a grammar
- Some robustness can be achieved in other ways, e.g., moving to more abstract representations (more later)
- Training data choice is a big factor in what is being modeled
 - Trigram model trained on Shakespeare represents the probabilities in Shakespeare, not of English overall
 - Choice of corpus depends upon the purpose

Add-One Smoothing

One way to smooth is to add a count of one to every bigram:
- In order to still be a probability, all probabilities need to sum to one
- Thus: add number of word types to the denominator
- If the probability were zero, there would be no chance of appearing

Witten-Bell Discounting

An alternate way of viewing smoothing is as discounting
- Lowering non-zero counts to get the probability mass we need for the zero count items
- The discounting factor can be defined as the ratio of the smoothed count to the MLE count
 \[\frac{C(w_{i-1}, w_i) + 1}{C(w_{i-1}) + V} \]
- Jurafsky and Martin show that add-one smoothing can discount probabilities by a factor of 10!
 - Too much of the probability mass is now in the zeros
 - We will examine one way of handling this; more in L645

Smoothing example

So, if treasure trove never occurred in the data, but treasure occurred twice, we have:

\[P'(\text{trove}|\text{treasure}) = \frac{2+1}{2+1} \]

The probability won’t be very high, but it will be better than 0
- If the surrounding probabilities are high, treasure trove could be the best pick
- If the probability were zero, there would be no chance of appearing

Witten-Bell Discounting formula

Idea: Use the counts of words you have seen once to estimate those you have never seen
- Instead of simply adding one to every n-gram, compute the probability of \(w_{i-1}, w_i \) by seeing how likely \(w_{i-1} \) is at starting any bigram.
- Words that begin lots of bigrams lead to higher “unseen bigram” probabilities
- Non-zero bigrams are discounted in essentially the same manner as zero count bigrams
 - Jurafsky and Martin show that they are only discounted by about a factor of one

Witten-Bell Discounting

\[p'(w_i|w_{i-1}) = \frac{T(w_{i-1})}{Z(w_{i-1})(N(w_{i-1}) + T(w_{i-1}))} \]

\(T(w_{i-1}) \) = number of bigram types starting with \(w_{i-1} \)
 - determines how high the value will be (numerator)
\(N(w_{i-1}) \) = no. of bigram tokens starting with \(w_{i-1} \)
 - \(N(w_{i-1}) + T(w_{i-1}) \) gives total number of “events” to divide by
\(Z(w_{i-1}) \) = number of bigram tokens starting with \(w_{i-1} \)
 - and having zero count
 - this distributes the probability mass between all zero count bigrams starting with \(w_{i-1} \)
Class-based N-grams

Intuition: we may not have seen a word before, but we may have seen a word like it
- Never observed Shanghai, but have seen other cities
- Can use a type of hard clustering, where each word is only assigned to one class (IBM clustering)

\[(13) \quad P(w_i|w_{i-1}) \approx P(c_i|c_{i-1}) \times P(w_i|c_i)\]

POS tagging equations will look fairly similar to this ...

Backoff models: Basic idea

Assume a trigram model for predicting language, where we haven’t seen a particular trigram before
- Maybe we’ve seen the bigram or the unigram
- Backoff models allow one to try the most informative n-gram first and then back off to lower n-grams

Backoff equations

Roughly speaking, this is how a backoff model works:
- If this trigram has a non-zero count, use that:
 \[(14) \quad \hat{P}(w_i|w_{i-2}w_{i-1}) = P(w_i|w_{i-2}w_{i-1})\]
- Else, if the bigram count is non-zero, use that:
 \[(15) \quad \hat{P}(w_i|w_{i-2}w_{i-1}) = \alpha_1 P(w_i|w_{i-1})\]
- In all other cases, use the unigram information:
 \[(16) \quad \hat{P}(w_i|w_{i-2}w_{i-1}) = \alpha_2 P(w_i)\]

Backoff models: example

Assume: never seen the trigram maples want more before
- If we have seen want more, we use that bigram to calculate a probability estimate \((P(\text{more}|\text{want}))\)
- But we’re now assigning probability to \(P(\text{more}|\text{maples, want})\) which was zero before
 - We won’t have a true probability model anymore
 - This is why \(\alpha_1\) was used in the previous equations, to assign less re-weight to the probability.

In general, backoff models are combined with discounting models
- Point for us: which pieces of (local) information are most relevant to making a decision?