POS Tagging Problem

- Given a sentence $W_1 \ldots W_n$ and a tagset of lexical categories, find the most likely tag $T_1 \ldots T_n$ for each word in the sentence
- Example

 Secretariat/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NN
 People/NNS continue/VBP to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN for/IN outer/JJ space/NN

- Note that many of the words may have unambiguous tags
 - But enough words are either ambiguous or unknown that it's a nontrivial task

More Details of the Problem

- How ambiguous?
 - Most words in English have only one Brown Corpus tag
 - Unambiguous (1 tag) 35,340 word types
 - Ambiguous (2-7 tags) 4,100 word types = 11.5%
 - 7 tags: 1 word type "still"
 - But many of the most common words are ambiguous
 - Over 40% of Brown corpus tokens are ambiguous
 - Obvious strategies may be suggested based on intuition
 - to/TO race/VB
 - the/DT race/NN
 - will/MD race/NN
 - This leads to hand-crafted rule-based POS tagging (J&M, 5.4)
 - Sentences can also contain unknown words for which tags have to be guessed: Secretariat/NNP

Example English Part-of-Speech Tagsets

- Brown corpus - 87 tags
 - Allows compound tags
 - "I'm" tagged as PPSS+BEM
 - PPSS for "non-3rd person nominative personal pronoun"
 - BEM for "am, 'm"
 - Others have derived their work from Brown Corpus
 - LOB Corpus: 135 tags
 - Lancaster UCREL Group: 165 tags
 - BNC – 61 tags (C5)
 - PTB – 45 tags
 - Other languages have developed other tagsets

PTB Tagset (36 main tags + punctuation tags)

- Certain tagging distinctions are particularly problematic
 - For example, in the Penn Treebank (PTB), tagging systems do not consistently get the following tags correct:
 - NN vs NNP vs JJ, e.g., Fantastic
 - somewhat ill-defined distinctions
 - RP vs RB vs IN, e.g., off
 - pseudo-semantic distinctions
 - VBD vs VBN vs JJ, e.g., hated
 - non-local distinctions
 - VBD vs VBN vs JJ, e.g., hated
 - non-local distinctions
POS Tagging Methods

- Two basic ideas to build from:
 - Establishing a simple baseline with unigrams
 - Hand-coded rules

- Machine learning techniques:
 - Supervised learning techniques
 - Unsupervised learning techniques

- We’ll only provide an overview of the methods
 - We’ll spend an extra day on constraint grammar for POS tagging
 - Many of the HMM details will be left to L645

A Simple Strategy for POS Tagging

- Choose the most likely tag for each ambiguous word, independent of previous words
 - i.e., assign each token the POS category it occurred as most often in the training set
 - e.g., race – which POS is more likely in a corpus?

- This strategy gives you 90% accuracy in controlled tests
 - So, this "unigram baseline" must always be compared against

Example of the Simple Strategy

- Which POS is more likely in a corpus (1,273,000 tokens)?

<table>
<thead>
<tr>
<th>NN</th>
<th>VB</th>
</tr>
</thead>
<tbody>
<tr>
<td>race</td>
<td>400</td>
</tr>
<tr>
<td>Total</td>
<td>1000</td>
</tr>
</tbody>
</table>

- \(P(\text{NN}|\text{race}) = \frac{P(\text{race} \& \text{NN})}{P(\text{race})} \) by the definition of conditional probability
 - \(P(\text{race}) \approx \frac{1000}{1,273,000} = .0008 \)
 - \(P(\text{race} \& \text{NN}) \approx \frac{400}{1,273,000} = .0003 \)
 - \(P(\text{race} \& \text{VB}) \approx \frac{600}{1,273,000} = .0005 \)

- And so we obtain:
 - \(P(\text{NN}|\text{race}) = \frac{P(\text{race} \& \text{NN})}{P(\text{race})} = \frac{.0003}{.0008} = .375 \)
 - \(P(\text{VB}|\text{race}) = \frac{P(\text{race} \& \text{VB})}{P(\text{race})} = \frac{.0004}{.0008} = .625 \)

Hand-coded rules

- Two-stage system:
 - Dictionary assigns all possible tags to a word
 - Rules winnow down the list to a single tag
 - Sometimes, multiple tags are left, if it cannot be determined

- Can also use some probabilistic information
- These systems can be highly effective, but they of course take time to write the rules.
 - We’ll see an example later of trying to automatically learn the rules (transformation-based learning)

Hand-coded Rules: ENGCG System

- Uses 56,000-word lexicon which lists parts-of-speech for each word (using two-level morphology)
- Uses up to 3,744 rules, or constraints, for POS disambiguation

ADV-that rule

Given input "that" (ADV/PRON/DET/COMP)
If (+1 A/ADV/QUANT) #next word is adj, adv, or quantifier
 (+2 SENT_LIM) #and following word is a sentence boundary
 (NOT +1 SVOC/A) #and the previous word is not a verb like
 #consider which allows adj as object complements
Then eliminate non-ADV tags
Else eliminate ADV tag

Machine Learning

- Machines can learn from examples
 - Learning can be supervised or unsupervised

- Given training data, machines analyze the data, and learn rules which generalize to new examples
 - Can be sub-symbolic (rule may be a mathematical function) e.g., neural nets
 - Or it can be symbolic (rules are in a representation that is similar to representation used for hand-coded rules)

- In general, machine learning approaches allow for more tuning to the needs of a corpus, and can be reused across corpora
1. TBL: A Symbolic Learning Method

- A method called error-driven Transformation-Based Learning (TBL) (Brill algorithm) can be used for symbolic learning
 - The rules (actually, a sequence of rules) are learned from an annotated corpus
 - Performs about as accurately as other statistical approaches

- Can have better treatment of context compared to HMMs (later)
 - rules which use the next (or previous) POS
 - HMMs just use $P(T_i|T_{i-1})$ or $P(T_i|T_{i-2} T_{i-1})$
 - rules which use the previous (next) word
 - HMMs just use $P(W_i|T_i)$

Brill Algorithm (Overview)

- Assume you are given a training corpus G (for gold standard)
- First, create a tag-free version V of it ... then do steps 1-4
- Notes:
 - As the algorithm proceeds, each successive rule covers fewer examples, but potentially more accurately
 - Some later rules may change tags changed by earlier rules

1. Initial-state annotator: Label every word token with its most likely tag (based on lexical generation probabilities).
2. List the positions of tagging errors and their counts, by comparing with “truth” (T)
3. For each error position, consider each instantiation I of X, Y, and Z in Rule template.
 - If $Y=T$, increment improvements[I], else increment error[I].
4. Pick the I which results in the greatest error reduction, and add to output
 - VB NN PREV1OR2TAG DT improves on 98 errors, but produces 18 new errors, so net decrease of 80 errors
5. Apply that I to corpus
6. Go to 2, unless stopping criterion is reached

Brill Algorithm (More Detailed)

- 1. Label every word token with its most likely tag (based on lexical generation probabilities).
- 2. List the positions of tagging errors and their counts, by comparing with “truth” (T)
- 3. For each error position, consider each instantiation I of X, Y, and Z in Rule template.
 - If $Y=T$, increment improvements[I], else increment error[I].
- 4. Pick the I which results in the greatest error reduction, and add to output
 - VB NN PREV1OR2TAG DT improves on 98 errors, but produces 18 new errors, so net decrease of 80 errors
- 5. Apply that I to corpus
- 6. Go to 2, unless stopping criterion is reached

Rule Templates

- Brill’s method learns transformations which fit different templates
 - Template: Change tag X to tag Y when previous word is W
 - Transformation: $NN \rightarrow VB$ when previous word $= to$
 - Change tag X to tag Y when next tag is Z
 - $NN \rightarrow NNP$ when next tag $= NNP$
 - $VB \rightarrow VB$ when one of previous 3 words $= has$

- The learning process is guided by a small number of templates (e.g., 26) to learn specific rules from the corpus
- Note how these rules sort of match linguistic intuition

Error-driven method

- How does one learn the rules?
- The TBL method is error-driven
 - The rule which is learned on a given iteration is the one which reduces the error rate of the corpus the most, e.g.:
 - Rule 1 fixes 50 errors but introduces 25 more
 - Rule 2 fixes 45 errors but introduces 15 more
 - Choose rule 2 in this case
- We set a stopping criterion, or threshold once we stop reducing the error rate by a big enough margin, learning is stopped

Example of Error Reduction

From Eric Brill (1995):
Computational Linguistics, 21, 4, p. 7
2. HMMs: A Probabilistic Approach

- What you want to do is find the "best sequence" of POS tags T=T1..Tn for a sentence W=W1..Wn.
- (Here T1 is pos_tag(W1)). Find a sequence of POS tags T that maximizes P(T|W).
- Using Bayes’ Rule, we can say P(T|W) = P(W|T)*P(T)/P(W).
- We want to find the value of T which maximizes the RHS → denominator can be discarded (same for every T).
- Find T which maximizes P(W|T)*P(T).

Example: He will race
- Possible sequences:
 - He/PRP will/MD race/NN
 - He/PRP will/MD race/VB
 - He/PRP will/NN race/VB

Example of Learned Rule Sequence

- 1. NN VB PREVTAG TO
 - to/TO race/NN->VB
- 2. VBP VB PREV1OR20R3TAG MD
 - might/MD vanish/VBP-> VB
- 3. NN VB PREV1OR2TAG MD
 - might/MD not/RR reply/NN -> VB
- 4. VB NN PREV1OR2TAG DT
 - the/DT great/JJ feast/VB->NN
- 5. VBD VBN PREV1OR2OR3TAG VBZ
 - He/PP was/VBZ killed/VBD->VBN by/IN Chapman/NNP

Rule ordering

- One rule is learned with every pass through the corpus.
 - The set of final rules is what the final output is.
 - Unlike HMMs, such a representation allows a linguist to look through and make more sense of the rules.
- The rules are learned iteratively & must be applied in an iterative fashion.
 - At one stage, it may make sense to change NN to VB after to.
 - But at a later stage, it may make sense to change VB back to NN in the same context, e.g., if the current word is school.

Handling Unknown Words

- Can also use the Brill method to learn how to tag unknown words.
- Instead of using surrounding words and tags, use affix info, capitalization, etc.
 - Guess NNP if capitalized, NN otherwise.
 - Or use the tag most common for words ending in the last 3 letters.
 - etc.
- TBL has also been applied to some parsing tasks.

Example Learned Rule Sequence for Unknown Words

<table>
<thead>
<tr>
<th>Usage tag:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. From common noun to plural common noun if the word has suffix -s/e</td>
</tr>
</tbody>
</table>
| 2. From common noun to number if the word has suffixed -
| 3. From common noun to adjective if the word has suffixed -
| 4. From common nom to past participle verb if the word has suffix -ed
| 5. From common noun to gerund or present participle verb if the word has suffix -ing
| 6. To adjective if adding the suffix SLY results in a word
| 7. To noun if the word has suffix -ly
| 8. From common noun to number if the word # ever appears immediately to the left
| 9. From common noun to adjective if the word has suffix -ed
| 10. From noun to base form verb if the word would ever appear immediately to the left.

Example of Learned Rule Sequence

- 1. NN VB PREVTAG TO
 - to/TO race/NN->VB
- 2. VBP VB PREV1OR20R3TAG MD
 - might/MD vanish/VBP-> VB
- 3. NN VB PREV1OR2TAG MD
 - might/MD not/RR reply/NN -> VB
- 4. VB NN PREV1OR2TAG DT
 - the/DT great/JJ feast/VB->NN
- 5. VBD VBN PREV1OR2OR3TAG VBZ
 - He/PP was/VBZ killed/VBD->VBN by/IN Chapman/NNP

Insights on TBL

- TBL takes a long time to train, but is relatively fast at tagging once the rules are learned.
- The rules in the sequence may be decomposed into non-interacting subsets, i.e., only focus on VB tagging (need to only look at rules which affect it)
- In cases where the data is sparse, the initial guess needs to be weak enough to allow for learning.
- Rules become increasingly specific as you go down the sequence.
 - However, the more specific rules generally don’t overfit because they cover just a few cases.

Independence Assumptions

- Assume that current event is based only on previous n-1 events (for a bigram model, it’s based only on previous 1 event).
 - P(T1…Tn) = Πi=1..n P(Ti | Ti-1)
 - assumes that the event of a POS tag occurring is independent of the event of any other POS tag occurring, except for the immediately previous POS tag
- (From a linguistic standpoint, this seems an unreasonable assumption, due to long-distance dependencies)
 - P(W1…Wn | T1…Tn) = Πi=1..n P(Wi | Ti)
 - assumes that the event of a word appearing in a category is independent of the event of any surrounding word or tag, except for the tag at this position.
Hidden Markov Models

- Linguists know both these assumptions are incorrect!
 - But, nevertheless, statistical approaches based on these assumptions work pretty well for part-of-speech tagging

- In particular, with Hidden Markov Models (HMMs)
 - Very widely used in both POS-tagging and speech recognition, among other problems
 - A Markov model, or Markov chain, is a weighted FSA

Using POS bigram probabilities: transitions

- Problem: Find T which maximizes $P(W | T) * P(T)$
 - Here $W=W_1..W_n$ and $T=T_1..T_n$

- Using a bigram model:
 - Transition probabilities (prob. of transitioning from one state/tag to another):
 - $P(T_1...T_n) ≅ \Pi_{i=1}^{n} P(T_i | T_{i-1})$
 - Emission probabilities (prob. of emitting a word at a given state):
 - $P(W_1...W_n | T_1...T_n) ≅ \Pi_{i=1}^{n} P(W_i | T_i)$

- Goal: find the value of $T_1..T_n$ which maximizes:
 - $\Pi_{i=1}^{n} P(W_i | T_i) * P(T_i | T_{i-1})$

Using POS bigram probabilities: transitions

- $P(T_1...T_n) = \Pi_{i=1}^{n} P(T_i | T_{i-1})$
- Example: He will race

- POS bigram probs from training corpus can be used for $P(T)$
- $P(T_1...T_n) ≅ \Pi_{i=1}^{n} P(T_i | T_{i-1})$
- $P(T_1...T_n) ≅ \Pi_{i=1}^{n} \frac{P(T_i)}{P(T_{i-1})}$

Factoring in lexical generation probabilities

- From the training corpus, need to find the T_i which maximizes:
 - $\Pi_{i=1}^{n} P(W_i | T_i) * P(T_i | T_{i-1})$

- Need to factor in the lexical generation (emission) probabilities:

Adding emission probabilities

- In order to find the most likely sequence of categories for a sequence of words, we don’t need to enumerate all possible sequences of categories.

 - Because of the Markov assumption, if you keep track of the most likely sequence found so far for each possible ending category, you can ignore all the other less likely sequences.
 - i.e., multiple edges coming into a state, but only keep the value of the most likely path
 - This is a use of dynamic programming

 - The algorithm to do this is called the Viterbi algorithm.
The Viterbi algorithm

1. Assume we’re at state I in the HMM
 - States $H_1 \ldots H_m$ all come into I
2. Obtain
 - the best probability of each previous state $H_1 \ldots H_m$
 - the transition probabilities: $P(I|H_1), \ldots P(I|H_m)$
 - the emission probability for word w at I: $P(w|I)$
3. Multiple the probabilities for each new path:
 - e.g., $P(I|H_I) \times P(I|H_I) \times P(w|I)$
4. One of these states ($H_1 \ldots H_m$) will give the highest probability
 - Only keep the highest probability when using I for the next state

Unsupervised learning

- Unsupervised learning:
 - Use an unannotated corpus for training data
 - Need another database of knowledge, e.g., dictionary of possible tags

- Unsupervised learning use the same general techniques as supervised, but there are important differences

- Advantage is that there is more unannotated data to learn from
 - And annotated data isn’t always available

Unsupervised TBL

- Initial state annotator
 - Supervised: assign random tag to each word
 - Unsupervised: for each word, list all tags in dictionary

- The templates change accordingly …

- Transformation template:
 - Change tag (set) X of word to tag Y if the previous (next) tag (word) is Z, where X is a set of 2 or more tags
 - Don’t change any other tags

Finding the best path through an HMM

- Best(I) = $\max_{1 \leq j \leq M} \{ \text{Best}(H_j) \times P(I|H_j) \times P(w|I) \}$
- Best(A) = 1
- Best(B) = $\text{Best}(A) \times P(\text{PRP}) \times P(w|\text{PRP}) = 1 \times 1 	imes 0.3 = 0.3$
- Best(C) = $\text{Best}(B) \times P(\text{MD|PRP}) \times P(w|\text{MD}) = 0.3 \times 0.8 \times 0.2 = 0.048$
- Best(D) = $\text{Best}(B) \times P(\text{NN|PRP}) \times P(w|\text{NN}) = 0.3 \times 0.2 \times 1 = 0.06$
- Best(E) = $\text{Max} \{ \text{Best}(C) \times P(\text{NN|MD}), \text{Best}(D) \times P(\text{NN|NN}) \} \times P(\text{race|NN}) = 0.00384$
- Best(F) = $\text{Max} \{ \text{Best}(C) \times P(\text{VB|MD}), \text{Best}(D) \times P(\text{VB|NN}) \} \times P(\text{race|VB}) = 0.00864$

Unsupervised Learning: TBL

- With TBL, we want to learn rules of patterns, but how can we learn the rules if there’s no annotated data?

- Main idea: look at the distribution of unambiguous words to guide the disambiguation of ambiguous words

- Example: the can, where can can be a noun, modal, or verb
 - Let’s take unambiguous words from dictionary and count their occurrences after the
 - the elephant
 - the guardian

- Conclusion: immediately after the, nouns are more common than verbs or modals

Error Reduction in Unsupervised Method

- Let a rule to change X to Y in context C be represented as $\text{Rule}(X, Y, C)$
 - Rule1: $\{\text{VB, MD, NN}\} \text{ NN PREVWORD the}$
 - Rule2: $\{\text{VB, MD, NN}\} \text{ VB PREVWORD the}$

- Idea:
 - since annotated data isn’t available, score rules so as to prefer those where Y appears much more frequently in the context C than all others in X
 - frequency is measured by counting unambiguously tagged words
 - so, prefer $\{\text{VB, MD, NN}\} \text{ NN PREVWORD the}$ to $\{\text{VB, MD, NN}\} \text{ VB PREVWORD the}$
 - since unambiguous nouns are more common in a corpus after the than unambiguous verbs