Chart parsing with non-atomic categories

L545

Spring 2016

(With thanks to Detmar Meurers)
Altering a chart parser to handle unification

By utilizing unification as we parse, we can eliminate parses that don’t work in the end

- e.g., eliminate NPs that don’t match in agreement features with their VPs as we parse, instead of as a filter
Changes to the chart representation

Each state will be extended to include the LHS feature structure (FS), which can get augmented as it goes along

- i.e., Add a feature structure (in DAG form) to each state
 - So, $S \rightarrow \bullet$ NP VP, $[0,0]$
 - Becomes $S \rightarrow \bullet$ NP VP, $[0,0]$, FS_S

The predictor, scanner, and completer have to pass the FS, so all three operations have to be altered
Earley parser with atomic categories

Prediction: for each $i[A \rightarrow \alpha \bullet_j B \beta]$ in chart
for each $B \rightarrow \gamma$ in rules
 add $j[B \rightarrow \bullet_j \gamma]$ to chart

Scanning: let $w_1 \ldots w_j \ldots w_n$ be the input string
for each $i[A \rightarrow \alpha \bullet_{j-1} w_j \beta]$ in chart
 add $i[A \rightarrow \alpha w_j \bullet_j \beta]$ to chart

Completion (fundamental rule of chart parsing):
for each $i[A \rightarrow \alpha \bullet_k B \beta]$ and $k[B \rightarrow \gamma \bullet_j]$ in chart
 add $i[A \rightarrow \alpha B \bullet_j \beta]$ to chart
Earley parser with unification

Prediction:
for each \(i[A \rightarrow \alpha \bullet_j B \beta] \) in chart
for each \(B' \rightarrow \gamma \) in rules
add \(j[\sigma(B \rightarrow \bullet_j \gamma)] \) with \(\sigma = \text{mgu}(B, B') \) to chart

Completion (fundamental rule of chart parsing):
for each \(i[A \rightarrow \alpha \bullet_k B \beta] \) and \(k[B' \rightarrow \gamma \bullet_j \beta] \) in chart
add \(i[\sigma(A \rightarrow \alpha B \bullet_j \beta)] \) with \(\sigma = \text{mgu}(B, B') \) to chart
Prediction

Prediction:

for each \(i[A \rightarrow \alpha \bullet_j B \beta] \) in chart

for each \(B' \rightarrow \gamma \) in rules

add \(j[\sigma(B \rightarrow \bullet_j \gamma)] \) with \(\sigma = \text{mgu}(B, B') \) to chart

The predictor takes the specification of \(B \) (i.e., FS) and finds the **most general unifier (mgu)** of \(B \) with \(B' \)

- If \(B \) & \(B' \) do not unify, the rule for \(B' \) is not added to the chart

- Initially (i.e., at position 0), all that happens is that a dotted rule with a FS is added to the chart
Completion (fundamental rule of chart parsing):

for each $i[A \rightarrow \alpha \bullet_k B \beta]$ and $k[B' \rightarrow \gamma \bullet_j]$ in chart

add $i[\sigma(A \rightarrow \alpha B \bullet_j \beta)]$ with $\sigma = \text{mgu}(B, B')$ to chart

Again, a step of unification is added.

- B and B' must unify in order for the dot to move
- The resulting FS is added to the chart
How to use a chart with feature structures

- Use **unification** to combine categories in completion or prediction
- Each time a rule or edge is used, a new **copy** is made
- But how about testing whether an entry already exists in the chart?
 - Currently, we simply check to see whether a state **unifies** with something already in the chart and do not add a new state if it is already there
 - But a more specific or a more general state may already be in the chart
The subsumption problem (based on Covington 1994)

- S → NP VP
- NP → Det N
- VP → V'(0)
- VP → V'(X) Comps(X)
- V'(X) → V(X)
- V'(X) → Adv V(X)
- Comps(1) → NP
- Comps(2) → NP NP
- Det → the
- N → dog
- N → cat
- Adv → often
- V(0) → sings
- V(1) → chases
- V(2) → gives
The subsumption problem (2)

What happens when we try to parse *the dog chases the cat*?

- At position 2 (between *dog* and *chases*), from 2 to 2, the parser predicts:
 - VP → • V'(0)
 - V'(0) → • V(0)
 - V'(0) → • Adv V(0)
 - VP → • V'(X) Comps(X)

- What happens when we scan *chases*?
 - We have a passive V(1) edge
 - But there is no predicted V'(1) edge—only V'(0)
Using subsumption to check the chart

Subsumption check: Do not add a state to the chart if an equivalent or more general state is already there.

- In trying to add a singular determiner state at \([x, y]\), if the chart already has a determiner state at \([x, y]\) unspecified for number, do not add it
- Without a subsumption restriction, we could add two states at \([x, y]\), one expecting to see a singular determiner, the other just a determiner.
 - On seeing a singular determiner, the parser advances the dot on both rules, creating two edges (since singular unifies with singular and with unspecified).
 - As a result, we would get duplicate edges.
- With subsumption, if either a singular or plural determiner is encountered, we advance the dot, creating only one edge (singular or plural) at \([x, y]\)
Checking for subsumption

Case 1

Let’s define a function `subsumes_chk` which takes 2 arguments: more general item & more specific item

No variables:

- `subsumes_chk(V'(1),V'(1)). → yes`
- `subsumes_chk(V'(1),V'(2)). → no`

Compound terms without variables are either identical or different, i.e., here: subsumption = unification
Checking for subsumption

Case 2

Variables only in more general term:

- subsumes_chk(V'(X),V'(1)). → yes
- subsumes_chk(foo(X,X),foo(1,1)). → yes
- subsumes_chk(foo(X,X),foo(1,2)). → no

Succeeds if a consistent variable assignment exists, i.e., here: subsumption = unification
Checking for subsumption

Case 3

Variables in both terms:

- subsumes_chk(vbar(X), vbar(Y)). → yes
- subsumes_chk(vbar(X), vbar(foo(1,Y))). → yes
- subsumes_chk(vbar(foo(1,2)), vbar(foo(1,Y))). → no

- Succeeds if terms can be unified without further instantiating more specific term; in other words:
 - Unification should not require a particular instantiation of a variable in the more specific term.

- Idea: Identify each variable in more specific term with a unique, variable-free term; then subsumption = unification.
The restriction problem

Shieber et al 1995: Grammar accepting ab^n with N being instantiated to the successor representation of n.

$$\text{start} \rightarrow r(0, N)$$
$$r(X, N) \rightarrow r(s(X), N) \ b$$
$$r(N, N) \rightarrow a$$

Prediction step with unification will loop:

1. $0[\text{start} \rightarrow \bullet_0 r(0, N)]$
2. $0[r(0, N) \rightarrow \bullet_0 r(s(0), N) \ b]$ \text{pred $r(0, N)$ in 1}
3. $0[r(s(0), N) \rightarrow \bullet_0 r(s(s(0)), N) \ b]$ \text{pred $r(s(0), N)$ in 2}
4. $0[r(s(s(0)), N) \rightarrow \bullet_0 r(s(s(s(0))), N) \ b]$ \text{pred $r(s(s(0)), N)$ in 3}
5. $0[r(s(s(s(0))), N) \rightarrow \bullet_0 r(s(s(s(s(0)))), N) \ b]$ \text{pred $r(s(s(s(0))), N)$ in 3}

...
Using restriction to prevent prediction loops

- Prediction terminates for grammars with atomic categories, since a new item is only added to the chart if not already there and there is a finite number of atomic categories.
- Moving beyond atomic categories, there can be an infinite number of non-atomic categories.
- Prediction loop on left-recursive rules can be problem again.
- Solution: restrict number of predicted categories to finitely many cases
Prediction with restriction

for each \(i[A \rightarrow \alpha \bullet_j B \beta] \) in chart
for each \(B' \rightarrow \gamma \) in rules
add \(j[\sigma(B \rightarrow \bullet_j \gamma)] \) with \(\sigma = \text{restriction}(\text{mgu}(B, B')) \) to chart

\text{restriction}(\text{mgu}(B, B')) can be any operation reducing the number of possible substitutions to finite classes:

- depth bound on term complexity
- elimination of terms that are known to grow indefinitely
- use of only selected terms known not to grow indefinitely

This is sound since prediction only creates a hypothesis to be completed!
Example

Grammar:
\[\text{start} \rightarrow r(0, N) \]
\[r(X, N) \rightarrow r(s(X), N) \ b \]
\[r(N, N) \rightarrow a \]

Parsing using a restrictor that replaces every term deeper than 2 with a variable:

1. \[\text{pred } r(0, N) \text{ in 1} \]
2. \[\text{pred } r(s(0), N) \text{ in 2} \]
3. \[\text{pred } r(s(s(A)), N) \text{ in 3} \]
4. \[\text{pred } r(s(s(A)), N) \text{ in 4} \]
5. \[\vdots \]

\[0[\text{start} \rightarrow \bullet_0 r(0, N)] \]
\[0[r(0, N) \rightarrow \bullet_0 r(s(0), N) \ b] \]
\[0[r(s(0), N) \rightarrow \bullet_0 r(s(s(0)), N) \ b] \]
\[0[r(s(s(A)), N) \rightarrow \bullet_0 r(s(s(s(A))), N) \ b] \]
\[= \text{edge 4} \]