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Natural Language Processing

Natural Language Processing (NLP): “The goal of this
. . . field is to get computers to perform useful tasks involving
human language” (Jurafsky & Martin 2009, p. 1)

Applications include:
I conversational agents / dialogue systems
I machine translation
I question answering
I ...

We will focus on natural language understanding (NLU):
obtaining linguistic information (meaning) from input (text)
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What do we need NLP for?

I One hand: we intend to do NLP, i.e., automatically
analyze natural language for the purposes of providing
meaning (of a sort) from a text

I Other hand: use NLP tools to pre-process data, i.e.,
provide sentence-level grammatical information:

I Segment sentences
I Tokenize words
I Part-of-speech tag words
I Syntactically (and semantically?) parse sentences
I Provide semantic word senses
I Provide named entities
I Provide language models

This kind of (pre-)processing is the focus for today
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Why (not) (just) surface features?

Surface features can be very useful
I Function words: small, closed set that recur a lot
I Ease of use: data-driven patterns emerge without

writing out patterns by hand
I Hypothesis: people differ in specific word choices

Surface features can be limited:
I Data sparsity: surface features may not be seen again,

especially with small training data
I Morphological complexity: word similarity can be

“hidden”
I Hypothesis: people differ in deeper linguistic properties
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Where we’re going

We are going to focus on:
I what the general tasks are & what the uses are
I what kinds of information they generally rely on
I what tools are available

We’ll look at POS tagging, parsing, word sense assignment,
named entity recognition, & semantic role labeling

I We’ll focus on English, but try to note general
applicability

Many taggers/parsers have pre-built models; others can be
trained on annotated data
I For now, we’ll focus on pre-built models
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Wikis with useful technology information

Places you can get your own information:

I Our very own IU CL wiki, which includes some people’s
experiences with various tools

I http://cl.indiana.edu/wiki
I Always feel free to add your own experiences to help

the next person who wants to use that tool
I ACL wiki & resources

I http:
//www.aclweb.org/aclwiki/index.php?title=Main Page

I http://www.aclweb.org/aclwiki/index.php?title=
ACL Data and Code Repository

I http://www.aclweb.org/aclwiki/index.php?title=
List of resources by language

I ACL software registry: http://registry.dfki.de/
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General NLP packages

I Stanford NLP: http://nlp.stanford.edu/software/ (see
esp. the CoreNLP package)

I EmoryNLP (NLP4J): http://nlp.mathcs.emory.edu
I ClearNLP: http://www.clearnlp.com
I FreeLing: http://nlp.lsi.upc.edu/freeling/
I LingPipe: http://alias-i.com/lingpipe/
I OpenNLP: http://opennlp.apache.org/index.html
I Natural Language Toolkit (NLTK): http://www.nltk.org/
I Illinois tools:

http://cogcomp.cs.illinois.edu/page/software
I DKPro: https://www.ukp.tu-darmstadt.de/research/

current-projects/dkpro/
I Includes text classification tool built on top of weka
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Topic #1: Language modeling

Language models store lots of text in n-gram form, using it to
assign probabilities to new sequences of text
I Tend to be fast & surprisingly accurate

Some packages:
I KenLM Language Model Toolkit:

https://kheafield.com/code/kenlm/
I MIT Language Modeling Toolkit:

https://code.google.com/p/mitlm/
I SRI Language Modeling Toolkit:

http://www.speech.sri.com/projects/srilm/
I CMU-Cambridge Statistical Language Modeling Toolkit

v2: http://www.speech.cs.cmu.edu/SLM/toolkit.html
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Why n-grams?

The packages themselves may or may not help us, but the
idea of surface n-grams likely will

I Core idea: sequences of words approximate syntactic &
some semantic constraints

I e.g., Who uses of the more? (of : nominals, the:
concrete objects/ideas)

I e.g., my life vs. your life

I n-grams also are at the core of other technologies:
POS tagging, distributional semantics, etc.
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Topic #2: POS Tagging

Idea: assign a part-of-speech to every word in a text

I (Supervised) Taggers work by:
I looking up a set of appropriate tags for a word in a

dictionary
I using local context to disambiguate from among the set

I Sequence modeling (HMMs, CRFs) are thus popular

Some examples illustrating the utility of local context:

I for the man: noun or verb?
I we will man: noun or verb?
I I can put: verb base form or past?
I re-cap real quick: adjective or adverb?

Bigram or trigram tagging is quite popular
I Take L545/L645 if you want to know more
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Motivation for POS tags

What are POS tags good for in our intended downstream
applications?
I First step towards knowing the meaning, e.g., for word

senses (e.g., leaves)
I Help identify function words & content words (e.g., for

stylometry)
I POS sequences (n-grams) may be indicative of style

I POS n-grams approximate syntax

Note that POS tags are generally very fast to obtain & are
generally accurate (for English, on well-formed data)
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Challenges for POS tagging

General challenges:
I Ambiguity

I e.g., still as noun, verb, adverb, adjective, ...
I Unknown words

I Programs use things like suffix tries to guess at the
possible POS tags for unknown words

These challenges are exacerbated in the following areas:
I Morphologically-rich languages
I Data which is not well-edited (e.g., web data)
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POS taggers

I TnT: http://www.coli.uni-saarland.de/∼thorsten/tnt/
I Trainable; models for German & English

I TreeTagger: http:
//www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/

I Trainable; models for English, German, Italian, Dutch,
Spanish, Bulgarian, Russian, & French; unix, mac, PC

I Qtag: http://www.english.bham.ac.uk/staff/omason/
software/qtag.html

I Trainable; models for German & English
I LingPipe: http://alias-i.com/lingpipe/index.html

I Has a variety of NLP modules
I OpenNLP: http://opennlp.sourceforge.net/

I Models for English, German, Spanish, & Thai; Has a
variety of NLP modules
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POS taggers (2)

I ACOPOST: http://acopost.sourceforge.net/
I Trainable; integrates different technologies

I Stanford tagger:
http://nlp.stanford.edu/software/tagger.shtml

I Trainable; models for English, Arabic, Chinese, &
German

I CRFTagger: http://crftagger.sourceforge.net/
I English

I Can also use SVMTool
(http://www.lsi.upc.edu/∼nlp/SVMTool/) or CRF++
(http://crfpp.sourceforge.net/) for tagging sequential
data, or fnTBL for classification tasks
(http://www.cs.jhu.edu/∼rflorian/fntbl/index.html)
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Specialized POS taggers

Twitter tagger:
I CMU Ark: http://www.ark.cs.cmu.edu/TweetNLP/
I GATE: https://gate.ac.uk/wiki/twitter-postagger.html

(also available to plug into Stanford tagger)

Biomedical tagger:
I GENIA tagger:

http://www.nactem.ac.uk/tsujii/GENIA/tagger/
I cTAKES (clinical Text Analysis and Knowledge

Extraction System):
https://ctakes.apache.org/index.html
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Topic #3: Parsing

Parsers attempt to build a tree, based on some grammar
I Efficiency based on many things, including the manner

in which the tree is built
I They often disambiguate by using probabilities of rules

Again, take L545/L645 for more details
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Constituencies & Dependencies

Rough idea of the difference:

Constituency: S

VP

NN

fire

VBD

breathed

NP

NN

dragon

DT

the

Dependency:

vroot the dragon breathed fire
DT NN VBD NN

DET SUBJ
ROOT

OBJ
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Constituency parsing

Goal is to obtain phrases
I Structured prediction: dealing with embedded /

recursive structures
I Parsing can be slow, but tends to be fairly accurate

I POS tags obtained while parsing more accurate than
with a standalone POS tagger

Usefulness for downstream applications:
I Identifying sequences, e.g., named entities
I Identifying complexity, e.g., depth of embedding
I Identifying particular types of constructions, e.g.,

relative clauses
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Challenges in parsing

In addition to things like lexical ambiguity & unknown words,
additional challenges include:
I Structural ambiguity: e.g., They saw the man in the park

with a telescope
I Garden paths: e.g., The horse raced past the barn fell

Again, out-of-domain data poses a challenge
I Note that for morphologically-rich languages, parsing is

underdeveloped & some of the work is in the
morphology
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Dependency parsing

Dependency parsing is the task of assigning dependency
(grammatical) relations to a sentence
I Provides quick access to semantic relations (“who did

what to whom”)
I Can be done on top of constituency parsing or on its

own
I Formally, dependency parsing is simpler: assign a

single head & relation for every word (single-head
constraint)

Useful applications:
I Pretty close to the same set as with constituencies ...
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Constituency Parsers

I LoPar: http:
//www.ims.uni-stuttgart.de/tcl/SOFTWARE/LoPar.html

I Trainable; models for English & German
I BitPar: http:

//www.ims.uni-stuttgart.de/tcl/SOFTWARE/BitPar.html
I Trainable; models for English & German

I Charniak & Johnson parser:
http://www.cs.brown.edu/people/ec/#software

I Trainable; mainly used for English
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Constituency Parsers (2)

I Collins/Bikel parser:
http://people.csail.mit.edu/mcollins/code.html
http://www.cis.upenn.edu/∼dbikel/software.html

I Trainable on English, Chinese, and Arabic; designed for
Penn Treebank-style annotation

I Stanford parser:
http://nlp.stanford.edu/downloads/lex-parser.shtml

I Trainable; models for English, German, Chinese, &
Arabic; dependencies also available

I Berkeley parser:
http://code.google.com/p/berkeleyparser/

I Trainable; models for English, German, and Chinese
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Dependency parsers

Recent parsers, which generally include other NLP tools:
I Mate Parser: https://code.google.com/p/mate-tools/
I TurboParser: http://www.ark.cs.cmu.edu/TurboParser/
I ZPar: http://sourceforge.net/projects/zpar/
I Stanford Neural Network Parser:

http://nlp.stanford.edu/software/nndep.shtml
Classic dependency parsers:
I MaltParser:

http://w3.msi.vxu.se/∼nivre/research/MaltParser.html
I Trainable; models for Swedish, English, & Chinese

I MSTParser: http://sourceforge.net/projects/mstparser
I Trainable; has some models for English & Portuguese

I Link Grammar parser:
http://www.abisource.com/projects/link-grammar/

I English only

CCG parsers: http://groups.inf.ed.ac.uk/ccg/software.html
I Primarily for English, although can be trained on

German CCGbank
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Topic #4: Semantics

Semantics is the study of meaning in language

We’ll break it down into:
I Lexical semantics: word meaning

I Semantic spaces: word meaning derived from data

I Compositional semantics: sentence meaning

and look at technology for all of them
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Semantic class assignment
Word sense disambiguation

Word sense disambiguation (WSD): for a given word,
determine its semantic class
I bank.01: They robbed a bank and took the cash.
I bank.02: They swam awhile and then rested on the

bank.

Lexical resources define the senses, e.g.
I WordNet: http://wordnet.princeton.edu
I BabelNet: http://babelnet.org
I SentiWordNet: http://sentiwordnet.isti.cnr.it

25 / 33

Natural Language
Processing

Language modeling

POS tagging
Available POS Taggers

Parsing
Available parsers

Semantic
processing
Semantics (lexical)

Statistical semantics

Semantics (compositional)

WSD software

I GWSD: Unsupervised Graph-based Word Sense
Disambiguation
http://web.eecs.umich.edu/∼mihalcea/downloads.html

I SenseLearner: All-Words Word Sense Disambiguation
Tool:
http://web.eecs.umich.edu/∼mihalcea/downloads.html

I KYOTO UKB graph-based WSD:
http://ixa2.si.ehu.es/ukb/

I pyWSD: Python Implementation of Simple WSD
algorithms: https://github.com/alvations/pywsd

I Various packages from Ted Pedersen, including
Senseval systems:
http://www.d.umn.edu/∼tpederse/code.html
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Semantic class assignment
Named entity recognition

Named entity recognition (NER): classify elements (words,
phrases) into pre-defined entity classes
I Common categories include: PER(son),

ORG(anization), LOC(ation), etc.
I May have hierarchical categories

Techniques often rely on phrase chunking & may involve
using a gazetteer (external list of entities)
I From the list of general NLP tools above, Stanford,

UIUC, & OpenNLP have NER modules
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LIWC

A popular tool to use is LIWC (Linguistic Inquiry and Word
Count)
I http://liwc.wpengine.com

Words are grouped into “psychologically-relevant categories”
based on hand-crafted dictionaries
I It does not (admittedly) handle ambiguity
I it is proprietary
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Statistical semantics
Distributional representations

Part of the motivation with using semantic classes is to
group together relatively infrequent words
I i.e., get a handle on data sparsity

A long-standing hypothesis: the distributional hypothesis
I “[L]inguistic items with similar distributions have similar

meanings”
I https://en.wikipedia.org/wiki/Distributional semantics

I These patterns can be learned in large, general
(unannotated) corpora and applied to our problems

I Roughly: the meaning of a word corresponds to its
position in a vector space

I One package in Python is gensim
I http://radimrehurek.com/gensim/

Consider also, e.g., Brown clustering
(https://github.com/percyliang/brown-cluster)
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Statistical semantics
Distributed representations

More recently, distributed representations of words, using
neural networks, have been extremely popular
I key phrases: deep learning, word embeddings,

recurrent neural networks
I A word is represented by a variety of dimensions, each

one capturing potentially useful properties
I http://aclweb.org/anthology/P/P10/P10-1040.pdf

Some resources:
I A general guide to distributed representations:

http://www.cs.toronto.edu/∼bonner/courses/2014s/
csc321/lectures/lec5.pdf

I A practical guide to word vectors: https://www.kaggle.
com/c/word2vec-nlp-tutorial/details/part-2-word-vectors

I The word2vec page:
https://code.google.com/archive/p/word2vec/
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Statistical semantics

Options to think about with word embeddings:
I Architecture
I Training algorithm
I Downsampling of frequent words
I Word vector dimensionality
I Context / window size
I Worker threads
I Minimum word count

See Kaggle page for tips ...
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Semantic role labeling

Idea: The words of a sentence combine to form a meaning
I Hypothesis: the syntax and semantics can be built up in

a corresponding fashion

Semantic role labeling is the task of assigning semantic
roles to arguments in a sentence

e.g., for John loves Mary:

I (to) love is the predicate
I John is the agent (ARG0)
I Mary is the patient (ARG1)
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Semantic role labelers

I Clear: http://www.clearnlp.com
I SENNA: http://ml.nec-labs.com/senna/
I UIUC:

http://cogcomp.cs.illinois.edu/page/software view/SRL
I SEMAFOR:

https://code.google.com/p/semafor-semantic-parser/
I SwiRL: http://www.surdeanu.info/mihai/swirl/
I Shalmaneser:

http://www.coli.uni-saarland.de/projects/salsa/shal/
I MATE: https://code.google.com/p/mate-tools/
I Turbo: http://www.ark.cs.cmu.edu/TurboParser/
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