Assignment 1
L245
Due Wednesday, January 25

1. Do question #1 from chapter 1 of the textbook (p. 29). For part (a), discuss not only the difficulties encountered, but also adaptations you would make to the syllabary to at least partially accommodate English. (Note: it is okay to still only approximate English and not cover every single word perfectly.)

2. (a) Give the base ten numbers for the following base two numbers (show your work):
 i. 111011011
 ii. 11010 (=00011010)
 (b) Give the base two (binary) numbers for these base ten numbers (show your work):
 i. 241
 ii. 67

3. Do question #3 from chapter 1 of the textbook (p. 30).

4. Attempt to “break” one of the TTS systems mentioned in the notes.
 (a) Come up with example sentences to try; describe what you expect to go wrong; and analyze what the TTS system does well and what its limitations are.
 (b) Take some back-transliterated text from question #1 and see how well the TTS system does with pseudo-English words. Are there words which are misspelled but the system still gets right? Why?

5. [moved to HW2:] Here are some bigram probabilities (Figure 6.7, Jurafsky & Martin (2000), 1st edition). For example, \(P(\text{want} | i) = 0.22 \), whereas \(P(i | \text{want}) = .0014 \). Ignoring start & end probabilities, calculate the probabilities for the sentences (a) & (b) using a bigram model (show your work). Then, answer (c).
 (a) \(i \) want to eat chinese lunch
 (b) \(i \) want to eat food

<table>
<thead>
<tr>
<th>1st word</th>
<th>2nd word</th>
<th>i</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>chinese</th>
<th>food</th>
<th>lunch</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>want</td>
<td>.0018</td>
<td>.22</td>
<td>.0020</td>
<td>.0028</td>
<td>.00020</td>
<td>.00020</td>
<td>.00020</td>
</tr>
<tr>
<td>want</td>
<td>.0014</td>
<td>.00035</td>
<td>.28</td>
<td>.00035</td>
<td>.0025</td>
<td>.0032</td>
<td>.0025</td>
<td></td>
</tr>
<tr>
<td>to</td>
<td>.00082</td>
<td>.00021</td>
<td>.0023</td>
<td>.18</td>
<td>.00082</td>
<td>.00021</td>
<td>.0027</td>
<td></td>
</tr>
<tr>
<td>eat</td>
<td>.00039</td>
<td>.00039</td>
<td>.0012</td>
<td>.00039</td>
<td>.0078</td>
<td>.0012</td>
<td>.021</td>
<td></td>
</tr>
<tr>
<td>chinese</td>
<td>.0016</td>
<td>.00055</td>
<td>.0055</td>
<td>.00055</td>
<td>.00055</td>
<td>.066</td>
<td>.0011</td>
<td></td>
</tr>
<tr>
<td>food</td>
<td>.0024</td>
<td>.00032</td>
<td>.0058</td>
<td>.00032</td>
<td>.00032</td>
<td>.00032</td>
<td>.00032</td>
<td></td>
</tr>
<tr>
<td>lunch</td>
<td>.00048</td>
<td>.00048</td>
<td>.00048</td>
<td>.00048</td>
<td>.00048</td>
<td>.00096</td>
<td>.00048</td>
<td></td>
</tr>
</tbody>
</table>

(c) The sentence \(i \) want to eat is more likely than \(i \) want to eat lunch, yet both are good sentences. If we wanted a better grasp on the likelihood of a sentence actually appearing in the English language, what other properties might we need to account for in our model?
6. [moved to HW2:] Do question #7 from chapter 1 of the textbook (p. 30) ... with a few alterations/clarifications:

- You need to ask 5 (or more) friends (or however many you need to sufficiently answer part b). You are still working with at least 10 bigrams.
- Be sure to present your data (in a readable, organized format): you will lose points for not showing your bigrams and your friends’ responses.
- You also have a new part (c): Based on your data, describe how this modeling is similar to or different from n-gram language modeling.