They typically follow the same stages of acquisition (babbling, word learning, simple utterances, etc.). Learners have relatively few opportunities to gain awareness of forms & rules and receive individual feedback.

Overarching question: How computers can help provide foreign language learners with experiences that are:
- richer,
- more personalized, and
- more effective?

First Language Acquisition

Second language learning differs in many ways from first language acquisition:
- Researchers disagree on how much of language learning ability is innate, i.e., a biological endowment
 - emerges from experience, i.e., a rich social and physical environment.
- But, crucially, children become native speakers without explicit instruction
 - They typically follow the same stages of acquisition (babbling, word learning, simple utterances, etc.)

Needs of second language learners

The time a student can spend with an instructor/tutor typically is very limited
- Work on form and grammar is often de-emphasized and confined to homework
- The time with the instructor is used for purely communicative activities
- Learners have relatively few opportunities to gain awareness of forms & rules and receive individual feedback

Some common computer uses

- Computers are widely used in support of foreign language teaching (FLT). For example, they
 - provide access to foreign language newspapers, radio, and TV programs through the internet
 - connect language learners with native speakers through email/chat
 - support multimedia presentations providing an audio-visual foreign language context
 - enable the learner to search for real-life examples in electronic corpora
- Essentially, such computer usage helps language learners experience a foreign language and culture in a more direct, real-life fashion.
An opportunity for CALL

- The situation seems like an excellent opportunity for developing Computer-Aided Language Learning (CALL) tools to
 - provide individual feedback on learner errors and foster learner awareness of relevant language forms and categories.
- But for existing CALL systems which offer exercises:
 - they typically are limited to uncontextualized multiple choice, point-and-click, or simple form filling
 - feedback usually is limited to yes/no or letter-by-letter matching of the string with a pre-stored answer
 - An example for letter-by-letter feedback on the “Spanish Grammar Exercises” site (B. K. Nelson)

CALL systems

- **Multiple choice**
 - Computers can explicitly store knowledge about words or grammar necessary to complete a specific exercise

 1. Fred lives ___ Mill Street, doesn’t he?
 - In
 - On
 - At

 2. My father was born ___ Christmas Eve.
 - On
 - At
 - In

 3. Come here ___ once! I need your help right now!
 - On
 - At
 - In

 (Source: http://www.eslcafe.com/quiz/prep3.html)

- **Multiple choice exercises** work well for practicing or testing specific choices of forms or meanings
 - Include so-called distractors as incorrect choices

Basic uses of computers for CALL

- Lots of general possibilities for using a computer to learn:
 - multimedia presentations
 - online dictionaries with fast access
 - extensive databases of information
 - digital audio files
 - digital videos of people speaking in L2

And then some more specific cases where natural language processing could help:
- interactive games & puzzles
- exercises for students to complete

CALL systems

- **Fill-in-the-blank**

Other possible exercises include:
- Pull-down menus listing the choices
- **Fill-in-the-blank (FIB) texts**: a word in a sentence is erased & the learner must type in the missing word
 - Also referred to as cloze exercises
 - Often include a fallback case to respond to any unexpected input
 - i.e., canned text responses

Putting questions on the web or another computer-based platform makes it possible to provide immediate feedback
- How to provide feedback for more open-ended exercise types?
 - Simple answer: write out all possibilities

Early CALL systems

- **Frame-based systems** “match student answers with a set of correct and incorrect answers stored in a frame”
 - These systems differ in their strategies for selecting questions, but they rely on preset questions & answers
 - In principle, could be used with NLP techniques

Many also feature a dynamic sequencing of instruction

Problems with frame-based systems

- Frame-based systems are fairly simple and generally do not involve much linguistic knowledge
 - There is no deep understanding of question domain
 - They generally only match answers with questions, but language use is more varied
 - There is not much tailoring to particular student needs
Language awareness
Making generalizations
What happens when teachers must specify all options for answering an exercise?

1. Today is November 5. What date is tomorrow?
 November, the sixth
 November 6th
 11/6

2. Many different ways to spell any of these options
 Many different possible incorrect answers
 ⇒ We need linguistic generalizations, in this case:
 • **Named entity recognition** to identify special expressions, e.g., dates, addresses, names

Language awareness
Morphological generalizations
Additionally, a single word in a language can show up in different forms.
- **e.g., citation form** or **lemma** of bring is to bring
 - Also realized as bringing, brought, bring, or brings
 - The different word forms and their function are investigated in **morphology**
- **Other languages feature richer inventories of forms**
 - **e.g.,** 6 forms for one of the verbs meaning to be in Spanish: soy, eres, es, somos, sois, son
 - Plus over a dozen other tenses and moods

We would need to spell out the many different forms for each exercise in a CALL system

Language awareness
Semantic generalizations
More broadly: refer to classes instead of individual strings
- Consider fill-in-the-blank exercise modeled on a German exercise in Trude Heift's E-Tutor system:

1. John works in New York City, but his family lives in Boston. On the weekend, he drives home. Fortunately, John has a new _______.

Different options for correctly filling in this blank:
- **Synonyms:** words which mean the same thing, at least in certain contexts: e.g., *car & automobile*
- **Other lexical semantic relations** between words:
 - **Hypernym:** using a more specific term (**hypernym**), e.g., *pick-up, SUV, or hybrid car*
 - The more general term car is the **hypernym**

Language awareness
Syntactic generalizations
Consider exercises where learner can enter multiple words
- The various word order possibilities result in additional, systematic variation
- **Syntax** identifies different word order possibilities & the forms words have to appear in

3. John, the radio is too loud. Please _______!

4. a. turn the radio down.
 b. turn the radio down.

Many non-English languages allow freer word order
- Capturing all possible word orders is infeasible
- Linguistic generalizations can compactly specify the expected correct or incorrect answers

Intelligent CALL (ICALL)
Intelligent CALL (ICALL) focuses on using linguistics and natural language processing to make CALL better.
- ICALL can also involve integrating authentic text into exercises, usually for more advanced learners
- ICALL involves providing linguistic analysis to handle real learner input

So, what types of linguistic analysis do we need to do?
A primary source of difficulty for Chinese word segmentation comes from segmentation ambiguities, including covering ambiguity and overlapping ambiguity (Liang, 1987). Covering ambiguity refers to the case where two segments may or may not be combined to form a larger segment. For example, the string /d_1376/ can potentially combine with either the preceding segment /d_6195/ or the /d_2316/ as shown in (1) and (2) respectively. In this case, however, only /d_6195/ can combine with /d_2316/ because any dictionary creation effort has limited resources and because new words and/or are not found in the training data used to train the segmenter. While segmentation ambiguities, including covering ambiguity and overlapping ambiguity (Liang, 1987), can be treated on a par with morphological and/or syntactic ones, as shown in (1) and (2) respectively, in so far as meta-linguistic feedback messages such as “The sentence you entered is missing a verb” indicate past tense, they should likely be treated on a par with meta-linguistic feedback messages such as “The sentence you entered is missing a verb”.

Unknown words constitute a second source of difficulty for Chinese word segmentation. These are words that are not registered in the dictionary used by the word segmenter. While most previous studies treat word segmentation and unknown word identification with linguistic and statistical heuristics for integrating unknown word identification and word segmentation with each other in context, and it is desirable to capture this dynamic interaction by incorporating both into training and test sets at a rather skewed ratio of 9.5:0.5 and finds that 4% of words we want, such as part-of-speech (POS) classes, to last character that is part of language and context.

Even for English, spaces are not exact:
- e.g., inasmuch as, insofar as, in spite of

1. Compound nouns such as flu shot:
 (5) a. I got my flu shot yesterday.
 b. I got my salary yesterday.

2. Contractions: e.g., I’m, cannot, or gonna
 - They should likely be treated on a par with I am, can, and going to

Automatic tokenizers typically have long lists of known words & abbreviations, plus (finite-state) rules for subregularities.

We describe a hybrid model that combines machine learning with linguistic and meta-linguistic feedback messages such as “The sentence you entered is missing a verb.”

Parts of speech are labels for classes of words which behave alike in three different ways:
1. Distribution: linear order with respect to other tokens, i.e., the slot a word appears in.
 - e.g., for John gave him ___ ball:
 - Slot between him & ball is a distributional slot of a determiner such as the or a
 - For automatic POS taggers, distributional information encoded as statistics about POS (n-gram) sequences

2. Lexical stem lookup
 - Unambiguous part-of-speech (POS): e.g., claustrophobic is only an adjective
 - Ambiguous POS: e.g., can
 - auxiliary: The baby can walk,
 - full verb: I can tune for a living,
 - a noun: Hand me that paint can, please.
 - Words not in the lexicon: a big problem for computers

3. Morphology: the form of words
 - Markings (e.g., suffixes added to stem endings) encode information only appropriate for particular POS
 - e.g., the -ed indicates past tense
 - Inflectional suffixes: information such as tense or agreement (e.g., -s on third person singular verbs)
 - Derivational affixes (e.g., -er turns verbs into nouns: walk — walker) Automatic POS-taggers use suffix analysis as a fallback step
 - If a word has not been seen before, suffix analysis determines the most likely POS

Complication: dealing with interlanguage
Consider these sentences written by Spanish learners of English (from the NOCE corpus):

6. a. ... to be choiced for a job ...
 b. RED helped him during he was in the prison.

 - choiced:
 - distributionally appears in a verbal slot
 - morphologically carries verbal inflection (-ed)
 - lexically the stem choice is a noun (or adjective)

 - during:
 - distributionally is a preposition
 - distributionally a conjunction

POS tagging for learner language need to be extended to take into account such potentially mismatching evidence.
Heift's system works so well because the exercises are constrainted, as we will see

- The approach is very modular = each check is an independent program
- e-Tutor (German Tutor): Heift & Nicholson (2001) is used at Simon Fraser University to teach German to students; it is:
 - general, i.e., allows for any native language (L1)
 - able to capture different kinds of errors
 - because in large part the exercises are very constrained

Student input is put through the following modules and stops with feedback when the first error is encountered

1. String match: if the input matches a pre-defined correct answer, we know it’s good.
 - Prevents time-consuming analysis for perfect answers
2. Punctuation check: is any punctuation missing?

More on system architecture

3. Spell check: run an off-the-shelf spell checker on the input and get the lemmas
 - Idea: eliminate the really basic errors.
 - Problem: sometimes a “misspelled” word is a sign of lack of grammatical competence, e.g. runned

4. Example check: are the right words being used?
5. Missing word check: are any words missing?
6. Extra word check: are any words added?
 - These 3 steps (example, missing word, and extra word checks) all are based on the notion that the exercise has pre-defined all the acceptable words

More on system architecture (cont.)

7. Word order check: match the user word order with the correct word order
8. Grammar check
 - This is the most complicated part of the process, the one which requires linguistic knowledge (syntax)
 - About 60% of errors make it to this stage.
9. Catch-all: just in case everything else fails

Note:
- Heift’s system works so well because the exercises themselves are constrained, as we will see
- The approach is very modular = each check is an independent program

Parsers, morphological analyzers, etc. are designed to handle well-formed input

- Use so-called mal-rules = rules which are added to the grammar to handle ill-formed cases.
 - e.g., A singular noun and a plural verb are allowed to combine, but it is marked as an error.
 - $S_{ill} \rightarrow NP_{ill} \ VP_{ill}$
- Modify the technology: a parser can be reworked to handle ill-formed input.
 - e.g., It will parse John are big, but will say that the parse failed and how it failed
TAGARELA

TAGARELA is a system developed for individualized instruction of Portuguese at Ohio State
- It features standard exercises, as found in foreign language workbooks
- NLP processing is used to detect spelling, morphological, syntactic, and semantic errors
- A student model is kept to track performance and to choose appropriate feedback
 - An instruction model allows the instructor to state what is important

Demand-driven architecture

Different from the e-Tutor, TAGARELA works in a demand-driven fashion; the analysis manager:
- receives input from the student
- gathers the necessary information from:
 - instruction model
 - student model
- decides on the best processing strategy
 - which NLP modules to call
 - in which order (as opposed to linearly)
- calls NLP modules to process input, producing an input annotated with linguistic properties
- hands the annotated input to the feedback manager

Sources of information for CALL systems

Generally, we have three sources of information by which to analyze a learner production:
1. Language/linguistic properties
 - General information we already discussed about linguistic generalizations
2. Exercise information
 - e.g., what is known about errors for “build a sentence” exercises
3. Information about the learner ...

Modeling the learner

Learner modeling includes two types of information:
1. Learner properties which are more or less permanent
 - e.g., gender, native language, learning style
2. Dynamic record of learner performance so far: whether a learner successfully used particular words/structures
Both types of information are relevant for feedback
- e.g., native language (L1) of a learner influences words & constructions used & mistakes made
 - Positive and negative L1-transfer
 - Negative transfer: many native speakers of languages such as Chinese or Czech, find the & a difficult
- L1s do not include articles of the kind found in English
- Tutoring system should provide feedback on article misuse for learners with such native languages

How do we obtain dynamic record of learner performance?
- The system needs to draw inferences from the learner’s interaction with the system.
 - Need to abstract to general linguistic properties & classes which a learner answer provides evidence for
 - e.g., whether a learner answer contained a finite verb, provided evidence for subject-verb agreement, etc.
 - After seeing answers with instances of a particular property, we can infer that the learner has mastered it
 - e.g., deprioritize feedback on it in the future
 - Models may help sequence teaching material
 - e.g., by guiding the learner to additional material on concepts not yet mastered
Authentic Text ICALL

Attempts to connect learners to appropriate naturally-occurring texts

- Allows students to find examples in target language related to their interests
- Allows for more exploration and something akin to “immersion”

The WERTi System

Visual Enhancement of the Web

VIEW is “an ICALL system designed to provide supplementary language learning activities using authentic texts selected by the learner”

- Multi-lingual extension of: WERTi - Working with English Real-Texts: An Intelligent Workbook for English
- Learners select a topic which fits their interests
- Webpages are returned, which learners interact to learn about, e.g., prepositions
 - Learners can choose to see prepositions in color; click on them; or fill in blanks

Crucially, the exercises are **generated** on the fly

- Pre-existing NLP technology (e.g., a POS tagger) is used to spot the relevant categories

The REAP Project

Reader-Specific Lexical Practice for Improved Reading Comprehension

In the REAP system:

- Teachers have target vocabulary items
- REAP finds appropriate texts for learners, based on their individual profile
 - Learners get individualized vocabulary practice from authentic web texts

There are several challenges in extracting text for reading

- Each extracted text is analyzed for its “syntactic features, readability, length, and the occurrence of target vocabulary”
- Information retrieval and statistical NLP techniques are used to find appropriate texts

GLOSSER

Facilitates dictionary look-up

- System uses lemmatization and morphological analysis
- Look-up is 100 times faster (Nerbonne 2003)
 - Otherwise very challenging for highly-inflected languages