Computation and Linguistic Analysis

From a practical perspective, computational linguistics provides the computational means to deal with spoken & written natural language:

- information extraction & text mining
- automatic translation
- message generation
- dialogue interaction
- sentiment analysis
- ...

From a linguistic perspective, computational linguistics provides a possibility to:

- formalize & computationally test linguistic theories
- obtain example data relevant to linguistic theorizing

Why study CL?

In other words: Why are you here?

- Human language is interesting and challenging
- NLP offers insight into properties of language
- Combines different thinking: ling, CS, psych, math, etc.
- Language is the medium of the web
- CL analysis can help in communication
- The field is ambitious yet practical
 - e.g., Machine Translation (MT) is enormously difficult, but MT is useful (e.g., webpage translations)

Symbolic CL

This course will focus more on so-called symbolic CL, or theory-driven computational linguistics

- When possible, we will connect the material to theoretical insights
- Although we’ll touch on some statistical methods, those are largely left for L645

General themes

This course will focus on what we need to know in order to represent language

- i.e., a focus on the underlying machinery more than the applications
- If you know how to use FSAs for morphology, you can learn how to use them for information extraction

Some themes that will recur this semester:

- Language is highly ambiguous
- Language can be modeled as a formal system
- Much language knowledge can be encoded by hand
- Language processing must be efficient

Course emphasis

In dealing with language this semester, we will emphasize the following three aspects:

- Data structures & models
- Formalisms for expressing grammars using these data structures
- Algorithms for processing with those grammars
 - Syntactic parsing will be of great emphasis
What you need to know (1)

As we focus on theory, it helps to know about the following:

- **Morphology**: what are the components of words?
- **Syntax**: what are the relevant types of constructions in language?
 - Arguments/Adjuncts, Control/raising, UDCs, Anaphora
- **Semantics**: how do word meanings compositionally form sentential meanings?

What you need to know (2)

We will treat language as a formal system, meaning:

- Language is a set of strings
- A language model recognizes or generates a set of strings

I want you to be comfortable with the idea of representing things formally (mathematically)

- We will deal with **set theory**