
1 

 
Morphology and 

Finite State Transducers 
 
 

 

 

L545 
 Spring 2017 

 

2 

Morphology 

• Morphology is the study of the internal structure of words 

-  morphemes: (roughly) minimal meaning-bearing unit in a language, 
smallest “building block” of words 

• Morphological parsing is the task of breaking a word down into its 
component morphemes, i.e., assigning structure 

-  going à go + ing 

-  running à run + ing 

• Note: spelling rules are different from morphological rules 

• Parsing can also provide us with an analysis 

-  going à go:VERB + ing:GERUND 

3 

Kinds of morphology 

•  Inflectional morphology = grammatical morphemes that are required for 
words in certain syntactic situations 

-  I run 

-  John runs 

• -s is an inflectional morpheme marking 3rd person singular verb 

• Derivational morphology = morphemes that are used to produce new 
words, providing new meanings and/or new parts of speech 

-  establish 

-  establishment 

• -ment is a derivational morpheme that turns verbs into nouns 

4 

Kinds of morphology (cont.) 

• Cliticization: word stem + clitic 

-  Clitic acts like a word syntactically, but is reduced in form 

-  e.g., ‘ve or ‘d 

• Non-Concatenative morphology 

-  Unlike the other morphological patterns above, non-concatenative 
morphology doesn’t build words up by concatenating them together  

-  Root-and-pattern morphology:  

• Root of, e.g., 3 consonants – lmd (Hebrew) = ‘to learn’ 

• Template of CaCaC for active voice 

-  Results in lamad for ‘he studied’ 

5 

More on morphology 

• We will refer to the stem of a word (main part) and its affixes (additions), 
which include prefixes, suffixes, infixes, and circumfixes 

• Most inflectional morphological endings (and some derivational) are 
productive – they apply to every word in a given class 

-  -ing can attach to any verb (running, hurting) 

-  re- can attach to virtually any verb (rerun, rehurt) 

• Morphology is more complex in agglutinative languages like Turkish 

-  Some of the work of syntax in English is in the morphology  

-  Shows that we can’t simply list all possible words 

6 

Overview 

A. Morphological recognition with finite-state automata (FSAs) 

B. Morphological parsing with finite-state transducers (FSTs) 

C. Combining FSTs 

D. More applications of FSTs 



7 

A. Morphological recognition with FSA 

• Before we talk about assigning a full structure to a word, we can talk 
about recognizing legitimate words 

• We have the technology to do this: finite-state automata (FSAs) 

8 

Overview of English verbal morphology 

•  4 English regular verb forms: base, -s, -ing, -ed 

-  walk/walks/walking/walked 

-  merge/merges/merging/merged 

-  try/tries/trying/tried 

-  map/maps/mapping/mapped 

•  Generally productive forms 

•  English irregular verbs (~250): 

-  eat/eats/eating/ate/eaten 

-  catch/catches/catching/caught/caught 

-  cut/cuts/cutting/cut/cut 

-  etc. 

9 

Analyzing English verbs 

• For the –s & –ing forms, both regular & irregular verbs use base forms 

•  Irregulars differ in how they treat the past and the past participle forms 

• So, we categorize words by their regularity and then build an FSA 

-  e.g., walk = vstem-reg 

-  ate = verb-past-irreg 

10 

FSA for English verbal morphological analysis 

• Q = {0, 1, 2, 3}; S= {0}; F ={1, 2, 3} 

• ∑ = {verb-past-irreg, …} 

• E = { (0, verb-past-irreg, 3), (0, vstem-reg, 1), 

(1, +past, 3), (1, +pastpart, 3), 

(0, vstem-reg, 2), (0, vstem-irreg, 2), 

(2, +prog, 3), (2, +sing, 3) } 

 

NB: FSA for morphotactics, not spelling rules (requires a separate FSA): 
rules governing classes of morphemes 

11 

FSA Exercise: Isleta Morphology 

• Consider the following data from Isleta, a dialect of Southern Tiwa, a 
Native American language spoken in New Mexico: 

•  [temiban]              ‘I went’ 

•  [amiban]                ‘you went’ 

•  [temiwe]               ‘I am going’ 

•  [mimiay]                ‘he was going’ 

•  [tewanban]            ‘I came’ 

•  [tewanhi]               ‘I will come’ 

12 

Practising Isleta 
• List the morphemes corresponding to the following English translations: 

-  ‘I’                       
-  ‘you’                  
-  ‘he’                     
-  ‘go’                     
-  ‘come’                
-  +past                                   
-  +present_progressive          
-  +past_progressive              
-  +future                               

• What is the order of morphemes in Isleta?  

• How would you say each of the following in Isleta? 
-  ‘He went’                       
-  ‘I will go’                       
-  ‘You were coming’        



13 

An FSA for Isleta Verbal Inflection 

• Q = {0, 1, 2, 3}; S ={0}; F ={3} 

• ∑ = {mi, te, a, wan, ban, we, ay, hi} 

• E = { (0, mi, 1), (0, te, 1), (0, a, 1), 

(1, mi, 2), (1, wan, 2), 

(2, ban, 3), (2, we, 3), (2, ay, 3), (2, hi, 3) } 

14 

B. Morphological Parsing with FSTs 

• Using a finite-state automata (FSA) to recognize a morphological 
realization of a word is useful 

• But we also want to return an analysis of that word: 

-  e.g. given cats, tell us that it’s cat + N + PL 

• A finite-state transducer (FST) do this: 

-  Two-level morphology: 

• Lexical level: stem plus affixes 

• Surface level: actual spelling/realization of the word 

-  So, for a word like cats, the analysis will (roughly) be: 

c:c  a:a  t:t  ε:+N  s:+PL 

15 

Finite-State Transducers 

•  While an FSA recognizes (accepts/rejects) an input expression, it doesn’t 
produce any other output 

-  An FST, on the other hand, produces an output expression à we 
define this in terms of relations 

•  FSA is a recognizer; an FST translates from one expression to another 

-  Reads from one tape, and writes to another tape 

-  Can also read from the output tape and write to the input tape 

•  FSTs can be used for both analysis and generation (bidirectional) 

16 

Transducers and Relations 

• Goal: translate from the Cyrillic alphabet to the Roman alphabet 

• We can use a mapping table, such as: 

-  A : A 

-  Б : B   

-  Г : G   

-  Д : D 

-  etc. 

• We define R = {<A, A>, <Б, B>, <Г, G>, <Д, D>, ..} 

-  We can thing of this as a relation R ⊆  Cyrillic X Roman 

17 

Relations and Functions 

• The cartesian product A X B is the set of all ordered pairs (a, b), where a 
is from A and b is from B 

A = {1, 3, 9}   B = {b, c, d} 

A X B = {(a, b) | a Є A and b Є B} 

          = {1, 3, 9} X {b, c, d}  

          = {(1, b), (1, c), (1, d), (3, b), (3, c), (3, d), ((9, b), (9, c), (9, d))} 

• A relation R(A, B) is a subset of A X B 

R1(A, B) = {(1, b), (9, d)}  

• A function from A to B is a binary relation where for each element a in 
A, there is exactly one ordered pair with first component a. 

• The domain of a function f is the set of values that f maps, and the range 
of f is the set of values that f maps to 

18 

The Cyrillic Transducer 

S ={0}; F = {0} 

(0, A:A, 0) 

(0, Б:B, 0) 

(0, Г:G, 0) 

(0, Д:D, 0) 

…. 

•  Transducers implement a mapping 
defined by a relation 

•  R = {<A, A>, <Б, B>, <Г, G>, <Д, 
D>, ..} 

•  These relations are called regular 
relations = sets of pairs of strings 

•  FSTs are equivalent to regular 
relations (akin to FSAs being 
equivalent to regular languages) 



19 

FSAs and FSTs 

• FSTs, then, are almost identical to FSAs … Both have: 
-  Q: finite set of states 
-  S: set of start states 
-  F: set of final states 
-  E: set of edges (cf. transition function) 

• Difference: alphabet for FST comprised of complex symbols (e.g., X:Y) 

-  FSA: ∑ = a finite alphabet of symbols 

-  FST: ∑ = a finite alphabet of complex symbols, or pairs 

• We can alternatively define an FST as using 4-tuples to define 
the set of edges E, instead of 3-tuples 

• Input & output each have their own alphabet 

• NB: As a shorthand, if we have X:X, we often write this as X 

20 

FSTs for morphology 

• For morphology, using FSTs allows us to: 

-  set up pairs between the lexical level (stem+features) and the 
morphological level (stem+affixes) 

• c:c  a:a  t:t  +N:^ +PL:s 

-  set up pairs to go from the morphological level to the surface level 
(actual realization) 

• c:c a:a: t:t ^:ε s:s 

• g:g  o:e  o:e  s:s  e:e ^:ε s:ε 
• Can combine both kinds of information into the same FST: 

-  c:c a:a t:t +N:ε +PL:s 

-  g:g  o:o  o:o  s:s  e:e  +N:ε +SG:ε 
-  g:g  o:e  o:e  s:s  e:e  +N:ε +PL:ε 

21 

Isleta Verbal Inflection 

•  I will go 

•  Surface: temihi 

•  Lexical: te+PRO+1P+mi+hi
+FUTURE 

  

   te    ε         ε        mi       hi      ε 

   te   +PRO +1P    mi       hi     +FUT 

•  Note: the cells line up across tapes: 

•  If an input symbol gives rise to 
more/less output symbols, epsilons 
are added to the input/output tape in 
the appropriate positions. 

22 

An FST for Isleta Verbal Inflection 

• NB: teεε : te+PRO+1P is shorthand for 3 separate arcs … 

• Q = {0, 1, 2, 3}; S ={0}; F ={3} 

• E is characterized as: 

0-> miεε : mi+PRO+3P  -> 1 
         teεε : te+PRO+1P  
         aεε : a+PRO+2P 

1-> mi   -> 2 
        wan     

2-> banε : ban+PAST          -> 3 
         weεε : we+PRES+PROG  

           ayεε : ay+PAST+PROG 
         hiε : hi+FUT 

23 

A Lexical Transducer 

• FSTs can be used in either direction: property of inversion 

•  l e a v e +VBZ : l e a v e s  
l e a v e +VB : l e a v e 
l e a v e +VBG : l e a v i n g  
l e a v e +VBD : l e f t  
l e a v e +NN : l e a v e  
l e a v e +NNS : l e a v e s  
l e a f +NNS : l e a v e s    
l e f t +JJ : l e f t 

• Left-to-Right Input: leave+VBD  (“upper language”) 
                      Output: left          (“lower language”) 

• Right-to-Left Input: leaves      (lower language) 
                    Output: leave+NNS (upper language) 
                                 leave+VBZ  
                                 leaf+NNS 

24 

Transducer Example 

•  L1= [a-z]+ 

•  Consider language L2 that results 
from replacing any instances of "ab" 
in L1 by "x". 

•   So, to define the mapping, we 
define a relation R  ⊆  L1 X L2 

-  e.g., <"abacab", "xacx”> 

•  Note: “xacx" in lower language is 
paired with 4 strings in upper 
language, "abacab", "abacx", 
"xacab", & "xacx" NB: ? = [a-z]\{a,b,x} 



25 

C. Combining FSTs: Spelling Rules 

• So far, we have gone from a lexical level (e.g., cat+N+PL) to a surface 
level (e.g., cats) in two steps 

-  Or vice versa 

• We’d like to combine those two steps 

-  The lexical level of “fox+N+PL” corresponds to “fox^s” 

-  And “fox^s” corresponds to “foxes” 

• Start: make the two stages clearer 

-  Note that, in the following, we’ll handle irregular plurals differently 
than before 

-  We’ll basically follow Jurafsky & Martin, although there are other 
ways to do this. 

26 

Lexicon FST (1st level) 

• The lexicon FST converts a lexical form to an intermediate form 

-  dog+N+PL à dog^s 

-  fox+N+PL à fox^s 

-  dog+V+SG à dog^s 

-  mouse+N+PL àmice … because no spelling rules apply 

• This will be of the form: 

-  0-> f ->1  3-> +N:^ ->4 

-  1-> o ->2  4-> +PL:s ->5 

-  2-> x ->3  4-> +SG:ε ->6 

-  and so on … 

27 

English noun lexicon as a FST (Lex-FST) 

J&M (1st ed.) 
Fig 3.9 

J&M (1st ed.) 
Fig 3.11 

Expanding 
the aliases 
 

28 

Rule FST (2nd level) 

• The rule FST will convert the intermediate form into the surface form 

-  dog^s à dogs (covers both N and V forms) 

-  fox^s à foxes 

-  mice à mice 

• Assuming we include other arcs for every other character, this will be of 
the form: 

-  0-> f ->0  1-> ^:ε ->2 

-  0 -> o ->0  2-> ε:e ->3 

-  0 -> x -> 1  3-> s ->4 

• But this FST is too impoverished … 

29 

Spelling rule example 

•  Issues: 

-  For foxes, we need to account for x being in the middle of other 
words (e.g., lexicon) 

-  Or, what do we do if we hit an s and an e has not been inserted? 

• The point is that we need to account for all possibilities 

-  In the FST on the next slide, compare how word-medial and word-
final x’s are treated, for example 

30 

E-insertion FST (J&M Fig 3.17, p. 64) 

# __ ^ / s 

z 

s 

x 

e → ε 



31 

E-insertion FST 

f o x ^ s # 

f o x e s # 

•  Trace: 
-  generating foxes# from fox^s#: 

q0-f->q0-o->q0-x->q1-^:ε->q2-ε:e->q3-s->q4-#->q0 
-  generating foxs# from fox^s#: 

q0-f->q0-o->q0-x->q1-^:ε->q2-s->q5-#->FAIL 
-  generating salt# from salt#: 

q0-s->q1-a->q0-l->q0-t>q0-#->q0 
-  parsing assess#: 

q0-a->q0-s->q1-s->q1-^:ε->q2-ε:e->q3-s->q4-s->FAIL 
q0-a->q0-s->q1-s->q1-e->q0-s->q1-s->q1-#->q0 

Intermediate Tape 

Surface Tape 

32 

Combining Lexicon and Rule FSTs 

• We would like to combine these two FSTs, so that we can go from the 
lexical level to the surface level. 

• How do we integrate the intermediate level? 

-  Cascade the FSTs: one after the other 

-  Compose the FSTs: combine the rules at each state 

33 

Cascading FSTs 

• The idea of cascading FSTs is simple: 

-  Input1 à FST1 à Output1 

-  Output1 à FST2 à Output2 

• The output of the first FST is run as the input of the second 

• Since both FSTs are reversible, the cascaded FSTs are still reversible/bi-
directional. 

-  As with one FST, it may not be a function in both directions 

34 

Composing FSTs 

• We can compose each transition in one FST with a transition in another 

-  FST1: p0-> a:b -> p1   p0-> d:e ->p1 

-  FST2: q0-> b:c -> q1   q0-> e:f -> q0 

• Composed FST: 

-  (p0,q0)-> a:c ->(p1,q1) 

-  (p0,q0)-> d:f ->(p1,q0) 

• The new state names (e.g., (p0,q0)) ensures that two FSTs with different 
structures can still be composed 

-  e.g., a:b and d:e originally went to the same state, but now we have 
to distinguish those states 

-  Why doesn’t e:f loop anymore? 

35 

Composing FSTs for morphology 

• With our lexical, intermediate, and surface levels, this means that we’ll 
compose: 

-  p2-> x ->p3  p4-> +PL:s ->p5 

-  p3-> +N:^ ->p4  p4-> ε:ε ->p4  (implicit) 

• and 

-  q0-> x ->q1  q2-> ε:e ->q3 

-  q1-> ^:ε ->q2  q3-> s ->q4 

•  into: 

-  (p2,q0)-> x ->(p3,q1) 

-  (p3,q1)-> +N:ε ->(p4,q2) 

-  (p4,q2)-> ε:e ->(p4,q3) 

-  (p4,q3)-> +PL:s ->(p4,q4) 
36 

D. More applications of FSTs 

• Syntactic (partial) parsing using FSTs 

-  Parsing – more than recognition; returns a structure 

-  For syntactic recognition, FSA could be used 

• How does syntax work? 

-  S à NP VP  D à the 

-  NP à (D) N  N à girl  N à zebras 

-  VP à V NP  V à saw 

• How do we go about encoding this? 



37 

Syntactic Parsing using FSTs 

The girl saw zebras 
D N V N 

NP NP 

VP 

S 

0       1         2              3              4 
Input 

FST 1: NPs 

FST 2: VPs 

FST 3: Ss 

FST1 
S={0}; final ={2} 
E = {(0, N:NP, 2), 
(0, D:ε, 1), 
(1, N:NP, 2)} 

D   N   V    N 
ε   NP  V   NP 
ε   NP   ε   VP 
ε   ε      ε    S 

FST1 
FST2 
FST3 

38 

Noun Phrase (NP) parsing using FSTs 

•  If we make the task more narrow, we can have more success – e.g., only 
parse (base) NPs 

-  The man on the floor likes the woman who is a trapeze artist 

-  [The man]NP on [the floor]NP likes [the woman]NP who is [ a trapeze 
artist]NP 

• Taking the NP chunker output as input, a PP chunker then can figure out 
base PPs: 

-  [The man]NP [on [the floor]NP]PP likes [the woman]NP who is [ a 
trapeze artist]NP 


