Chart parsing with non-atomic categories

L445 / L545

Spring 2017

(With thanks to Detmar Meurers)

Changes to the chart representation

Each state will be extended to include the LHS feature structure (FS), which can get augmented as it goes along

- i.e., Add a feature structure (in DAG form) to each state
- So, S \rightarrow \bullet \text{NP VP, [0,0]}
- Becomes S \rightarrow \bullet \text{NP VP, [0,1], FS}

The predictor, scanner, and completer have to pass the FS, so all three operations have to be altered

Earley parser with atomic categories

Prediction: for each \([A \rightarrow \alpha \bullet B \beta]\) in chart for each \(B' \rightarrow \gamma\) in rules add \([B \rightarrow \gamma]\) to chart

Scanning: let \(w_1 \ldots w_n\) be the input string for each \([A \rightarrow \alpha \bullet 1 \\gamma \wedge \beta]\) in chart add \([A \rightarrow \alpha \\wedge \gamma \beta]\) to chart

Completion (fundamental rule of chart parsing):

for each \([A \rightarrow \alpha \bullet 1 B \beta]\) and \(\gamma\) in chart add \([A \rightarrow \alpha B \gamma \beta]\) to chart

Earley parser with unification

Prediction: for each \([A \rightarrow \alpha \bullet 1 B \beta]\) in chart for each \(B' \rightarrow \gamma\) in rules add \([B' \rightarrow \gamma]\) with \(\sigma = \text{mgu}(B, B')\) to chart

Completion (fundamental rule of chart parsing):

for each \([A \rightarrow \alpha \bullet 1 B \beta]\) and \(\gamma\) in chart add \([\sigma(A \rightarrow \alpha B \gamma \beta)]\) with \(\sigma = \text{mgu}(B, B')\) to chart

Altering a chart parser to handle unification

By utilizing unification as we parse, we can eliminate parses that don’t work in the end

- e.g., eliminate NPs that don’t match in agreement features with their VPs as we parse, instead of as a filter

The predictor, scanner, and completer have to pass the FS, so all three operations have to be altered

The predictor takes the specification of \(B\) (i.e., FS) and finds the most general unifier (mgu) of \(B\) with \(B'\)

- If \(B\) & \(B'\) do not unify, the rule for \(B'\) is not added to the chart
- Initially (i.e., at position 0), all that happens is that a dotted rule with a FS is added to the chart
We have a passive V(1) edge, but there is no predicted V'(1) edge. On seeing a singular determiner, the parser advances. As a result, we would get duplicate edges. With subsumption, if either a singular or plural determiner is encountered, we advance the dot, creating only one edge (singular or plural) at [x, y].

The subsumption problem (based on Covington 1994)

- S → NP VP
- NP → Det N
- VP → V'(0)
- VP → V'(X) Comps(X)
- V'(X) → V(0)
- V'(X) → Adv V(X)
- Comps(1) → NP
- Comps(2) → NP NP
- Det → the
- N → dog
- N → cat
- Adv → often
- V(0) → sings
- V(1) → chases
- V(2) → gives

Using subsumption to check the chart

Subsumption check: Do not add a state to the chart if an equivalent or more general state is already there.

- In trying to add a singular determiner state at [x, y], if the chart already has a determiner state at [x, y] unspecified for number, do not add it.
- Without a subsumption restriction, we could add two states at [x, y], one expecting to see a singular determiner, the other just a determiner.
 - On seeing a singular determiner, the parser advances the dot on both rules, creating two edges (since singular unifies with singular and with unspecified).
 - As a result, we would get duplicate edges.
- With subsumption, if either a singular or plural determiner is encountered, we advance the dot, creating only one edge (singular or plural) at [x, y].

Completion (fundamental rule of chart parsing): for each [A → α • B β] and [B' → γ •] in chart, add [c(A → α • B β)] with c = mgu(B, B') to chart.

Again, a step of unification is added.
- B and B’ must unify in order for the dot to move
- The resulting FS is added to the chart.

How to use a chart with feature structures

- Use unification to combine categories in completion or prediction
- Each time a rule or edge is used, a new copy is made
- But how about testing whether an entry already exists in the chart?
 - Currently, we simply check to see whether a state unifies with something already in the chart and do not add a new state if it is already there.
 - But a more specific or a more general state may already be in the chart.

The subsumption problem (2)

What happens when we try to parse the dog chases the cat?

- At position 2 (between dog and chases), the parser predicts:
 - VP → • V'(0)
 - V'(0) → • Adv V(0)
 - V(0) → • V'(X) Comps(X)

- What happens when we scan chases?
 - We have a passive V(1) edge
 - But there is no predicted V'(1) edge—only V'(0)

Checking for subsumption

Case 1

Let’s define a function subsumes_chk which takes 2 arguments: more general item & more specific item

No variables:

- subsumes_chk(V'(1), V'(1)). → yes
- subsumes_chk(V'(1), V'(2)). → no

Compound terms without variables are either identical or different, i.e., here: subsumption = unification.
Variables only in more general term:

- \(\text{subsumes} _\text{chk}(vbar(X), vbar(Y))\) \(\rightarrow\) yes
- \(\text{subsumes} _\text{chk}(vbar(X), vbar(foo(X), 1))\) \(\rightarrow\) yes
- \(\text{subsumes} _\text{chk}(vbar(foo(X), 1), vbar(foo(1), 1))\) \(\rightarrow\) no

Succeeds if a consistent variable assignment exists, i.e.,
here: subsumption = unification

The restriction problem (if time)

Shieber et al. 1995: Grammar accepting \(ab^n\) with \(N\) being instantiated to the successor representation of \(n\).

\[
\begin{align*}
\text{start} & \rightarrow r(0, N) \\
r(X, N) & \rightarrow r(s(X), N) b \\
r(N, N) & \rightarrow a
\end{align*}
\]

Prediction step with unification will loop:

1. \(\sigma^{start} \rightarrow \bullet^0 r(0, N)\)
2. \(r(0, N) \rightarrow \bullet^0 r(s(0), N) b\)
3. \(r(s(0), N) \rightarrow \bullet^0 r(s(s(0)), N) b\)
4. \(r(s(s(0)), N) \rightarrow \bullet^0 r(s(s(s(0))), N) b\)
5. \(r(s(s(s(0))), N) \rightarrow \bullet^0 r(s(s(s(s(0))))), N) b\)

Using restriction to prevent prediction loops

- Prediction terminates for grammars with atomic categories, since a new item is only added to the chart
 if not already there and there is a finite number of atomic categories.
- Moving beyond atomic categories, there can be an infinite number of non-atomic categories.
- Prediction loop on left-recursive rules can be problem again.
- Solution: restrict number of predicted categories to finitely many cases

Prediction with restriction

- for each \(i[A \rightarrow \sigma \bullet B]\) in chart
 for each B' \(\rightarrow\) \(\gamma\) in rules
 add \(\sigma[B \rightarrow \sigma \bullet \gamma]\) with \(\sigma = \text{restriction}(\text{mgu}(B, B'))\) to chart

\(\text{restriction}(\text{mgu}(B, B'))\) can be any operation reducing the
number of possible substitutions to finite classes:

- depth bound on term complexity
- elimination of terms that are known to grow indefinitely
- use of only selected terms known not to grow indefinitely

This is sound since prediction only creates a hypothesis to be completed!

Example

Grammar:

\[
\begin{align*}
\text{start} & \rightarrow r(0, N) \\
r(X, N) & \rightarrow r(s(X), N) b \\
r(N, N) & \rightarrow a
\end{align*}
\]

Parsing using a restrictor that replaces every term deeper
than 2 with a variable:

1. \(\sigma^{start} \rightarrow \bullet^0 r(0, N)\)
2. \(r(0, N) \rightarrow \bullet^0 r(s(0), N) b\)
3. \(r(s(0), N) \rightarrow \bullet^0 r(s(s(0)), N) b\)
4. \(r(s(s(0)), N) \rightarrow \bullet^0 r(s(s(s(0))))), N) b\)
5. \(r(s(s(s(0))), N) \rightarrow \bullet^0 r(s(s(s(s(0))))), N) b\)

\(\vdash\)