
Towards more
complex grammar

systems
Some basic formal
language theory

Grammars

Automata

Complexity
Type 3

Type 2

Type 1

Type 0

Properties

Towards more complex grammar systems
Some basic formal language theory

L445 / L545

Spring 2017

(With thanks to Detmar Meurers)

1 / 22

Towards more
complex grammar

systems
Some basic formal
language theory

Grammars

Automata

Complexity
Type 3

Type 2

Type 1

Type 0

Properties

Overview

I Grammars, or: how to specify linguistic knowledge
I Automata, or: how to process with linguistic knowledge
I Levels of complexity in grammars and automata:

The Chomsky hierarchy

2 / 22

Towards more
complex grammar

systems
Some basic formal
language theory

Grammars

Automata

Complexity
Type 3

Type 2

Type 1

Type 0

Properties

Grammars

A grammar is a 4-tuple (N,Σ,S,P) where

I N is a finite set of non-terminals
I Σ is a finite set of terminal symbols,

with N ∩ Σ = ∅
I S is a distinguished start symbol, with S ∈ N
I P is a finite set of rewrite rules of the form α→ β, with
α, β ∈ (N ∪ Σ)∗ and α including at least one
non-terminal symbol.

3 / 22

Towards more
complex grammar

systems
Some basic formal
language theory

Grammars

Automata

Complexity
Type 3

Type 2

Type 1

Type 0

Properties

A simple example

N = {S, NP, VP, Vi , Vt , Vs}
Σ = {John, Mary, laughs, loves, thinks}
S = S

P =



S → NP VP

VP → Vi

VP → Vt NP
VP → Vs S

NP → John
NP → Mary

Vi → laughs
Vt → loves
Vs → thinks



4 / 22

Towards more
complex grammar

systems
Some basic formal
language theory

Grammars

Automata

Complexity
Type 3

Type 2

Type 1

Type 0

Properties

How does a grammar define a language?

Assume α, β ∈ (N ∪ Σ)∗, with α containing at least one
non-terminal.

I A sentential form for a grammar G is defined as:
I The start symbol S of G is a sentential form.
I If αβγ is a sentential form and there is a rewrite rule
β→ δ, then αδγ is a sentential form.

I α (directly or immediately) derives β if α→ β ∈ P.
I α⇒∗ β if β is derived from α in zero or more steps
I α⇒+ β if β is derived from α in one or more steps

I A sentence is a sentential form consisting only of
terminal symbols.

I The language L(G) generated by the grammar G is the
set of all sentences which can be derived from the start
symbol S, i.e., L(G) = {γ|S ⇒∗ γ}

5 / 22

Towards more
complex grammar

systems
Some basic formal
language theory

Grammars

Automata

Complexity
Type 3

Type 2

Type 1

Type 0

Properties

Processing with grammars: automata

An automaton in general has three components:

I an input tape, divided into squares with a read-write
head positioned over one of the squares

I an auxiliary memory characterized by two functions
I fetch: memory configuration→ symbols
I store: memory configuration × symbol→ memory

configuration

I and a finite-state control relating the two components.

6 / 22

Towards more
complex grammar

systems
Some basic formal
language theory

Grammars

Automata

Complexity
Type 3

Type 2

Type 1

Type 0

Properties

Different levels of complexity in grammars &
automata

Let A ,B ∈ N, x ∈ Σ, α, β, γ ∈ (Σ ∪ N)∗, and δ ∈ (Σ ∪ N)+:

Type Automaton Grammar
Memory Name Rule Name

0 Unbounded TM α→ β General rewrite
1 Bounded LBA β A γ → β δ γ Context-sensitive
2 Stack PDA A → β Context-free
3 None FSA A → xB, A → x Right linear

Abbreviations:
I TM: Turing Machine
I LBA: Linear-Bounded Automaton
I PDA: Push-Down Automaton
I FSA: Finite-State Automaton

7 / 22

Towards more
complex grammar

systems
Some basic formal
language theory

Grammars

Automata

Complexity
Type 3

Type 2

Type 1

Type 0

Properties

Type 3: Right-Linear Grammars and FSAs

A right-linear grammar is a 4-tuple (N,Σ,S,P) with

P a finite set of rewrite rules of the form α→ β, with α ∈ N
and β ∈ {γδ|γ ∈ Σ∗, δ ∈ N ∪ {ε}}, i.e.:

I left-hand side of rule: a single non-terminal, and
I right-hand side of rule: a string containing at most one

non-terminal, as the rightmost symbol

Right-linear grammars are formally equivalent to left-linear
grammars.

A finite-state automaton consists of

I a tape
I a finite-state control
I no auxiliary memory

8 / 22

Towards more
complex grammar

systems
Some basic formal
language theory

Grammars

Automata

Complexity
Type 3

Type 2

Type 1

Type 0

Properties

A regular language example: (ab |c)ab ∗ (a |cb)?

Right-linear grammar:

N = {Expr, X, Y, Z}
Σ = {a,b,c}
S = Expr

P =



Expr → ab X
Expr → c X

Y → b Y
Y → Z

X → a Y

Z → a
Z → cb
Z → ε



Finite-state transition network:

0start

5

4 1

3

2

c

a b

a
b

a

c b

9 / 22

Towards more
complex grammar

systems
Some basic formal
language theory

Grammars

Automata

Complexity
Type 3

Type 2

Type 1

Type 0

Properties

Thinking about regular languages

I A language is regular iff one can define a FSM (or
regular expression) for it.

I Note the rough correspondence between state 0 &
Expr, state 4 & X, and state 1 & Y

I Think about why we need the rule Y→ Z (Could we
write an FSM to more directly match the rules?)

I An FSM only has a fixed amount of memory, namely the
number of states.

I Strings longer than the number of states (in particular,
infinite ones) must result from a loop in the FSM.

I Pumping Lemma: if for an infinite string there is no such
loop, the string cannot be part of a regular language
(e.g., anbn is not regular).

10 / 22

Towards more
complex grammar

systems
Some basic formal
language theory

Grammars

Automata

Complexity
Type 3

Type 2

Type 1

Type 0

Properties

Pumping Lemma

Pumping Lemma: Let L be an infinite regular language.
Then there are strings x, y, and z, s.t. y , ε and xynz ∈ L for
n ≥ 0.
I If L is regular, then y can be “pumped”
I Used to show that a particular language isn’t regular if

no string can be pumped that way

Example: Trying to map anbn to xynz leads to a
contradiction

1. y is composed of all a’s→ more a’s than b ’s
2. y is composed of all b ’s→ more b ’s than a’s
3. y is composed of a’s & b ’s→ some b ’s precede some

a’s

11 / 22

Towards more
complex grammar

systems
Some basic formal
language theory

Grammars

Automata

Complexity
Type 3

Type 2

Type 1

Type 0

Properties

Type 2: Context-Free Grammars and
Push-Down Automata

A context-free grammar is a 4-tuple (N,Σ,S,P) with

P a finite set of rewrite rules of the form α→ β, with α ∈ N
and β ∈ (Σ ∪ N)∗, i.e.:

I left-hand side of rule: a single non-terminal, and
I right-hand side of rule: a string of terminals and/or

non-terminals

A push-down automaton is a
I finite state automaton, with a
I stack as auxiliary memory

12 / 22

Towards more
complex grammar

systems
Some basic formal
language theory

Grammars

Automata

Complexity
Type 3

Type 2

Type 1

Type 0

Properties

A context-free language example: anbn

Context-free grammar:
N = {S}
Σ = {a, b}
S = S

P =
{

S → a S b
S → ε

}

Push-down automaton:

0start 1

ε

a+push x b+pop x

13 / 22

Towards more
complex grammar

systems
Some basic formal
language theory

Grammars

Automata

Complexity
Type 3

Type 2

Type 1

Type 0

Properties

Type 1: Context-Sensitive Grammars and
Linear-Bounded Automata

A rule of a context-sensitive grammar

I rewrites at most one non-terminal from the left-hand
side (β A γ → β δ γ).

I right-hand side of a rule required to be at least as long
as the left-hand side, i.e. only contains rules of the form

α→ β with |α| ≤ |β|
and optionally S → ε with the start symbol S not
occurring in any β.

A linear-bounded automaton is a

I finite state automaton, with an
I auxiliary memory which cannot exceed the length of the

input string (but is not as restrictive as a stack).

14 / 22

Towards more
complex grammar

systems
Some basic formal
language theory

Grammars

Automata

Complexity
Type 3

Type 2

Type 1

Type 0

Properties

A context-sensitive language example: anbncn

Context-sensitive grammar:
N = {S, B, C}
Σ = {a, b}
S = S

P =



S → a S B C,
S → a b C,
b B → b b,
b C → b c,
c C → c c,
C B → B C



Weakly equivalent way to derive C B→ B C:
https://en.wikipedia.org/wiki/Context-sensitive grammar

15 / 22

Towards more
complex grammar

systems
Some basic formal
language theory

Grammars

Automata

Complexity
Type 3

Type 2

Type 1

Type 0

Properties

Type 0: General Rewrite Grammar & Turing
Machines

I In a general rewrite grammar there are no restrictions
on the form of a rewrite rule.

I A turing machine has an unbounded auxiliary memory.
I Any language for which there is a recognition procedure

can be defined, but recognition problem is not
decidable.

16 / 22

Towards more
complex grammar

systems
Some basic formal
language theory

Grammars

Automata

Complexity
Type 3

Type 2

Type 1

Type 0

Properties

Properties of different language classes

Languages are sets of strings, so that one can apply set
operations to languages and investigate the results for
particular language classes.

Some closure properties:
I All language classes are closed under union with

themselves.
I All language classes are closed under intersection

with regular languages.
I The class of context-free languages is not closed

under intersection with itself.
Proof: The intersection of the two context-free
languages L1 and L2 is not context free:

I L1 =
{
anbnc i |n ≥ 1 and i ≥ 0

}

I L2 =
{
a jbncn |n ≥ 1 and j ≥ 0

}

I L1 ∩ L2 = {anbncn |n ≥ 1}
17 / 22

Towards more
complex grammar

systems
Some basic formal
language theory

Grammars

Automata

Complexity
Type 3

Type 2

Type 1

Type 0

Properties

Criteria under which to evaluate grammar
formalisms

There are three kinds of criteria:
I linguistic naturalness
I mathematical power
I computational effectiveness and efficiency

The weaker the type of grammar:
I the stronger the claim made about possible languages
I the greater the potential efficiency of the parsing

procedure

Reasons for choosing a stronger grammar class:
I to capture the empirical reality of actual languages
I to provide for elegant analyses capturing more

generalizations (→ more “compact” grammars)
18 / 22

Towards more
complex grammar

systems
Some basic formal
language theory

Grammars

Automata

Complexity
Type 3

Type 2

Type 1

Type 0

Properties

Accounting for the facts
vs. linguistically sensible analyses

Looking at grammars from a linguistic perspective, one can
distinguish their
I weak generative capacity, considering only the set of

strings generated by a grammar
I strong generative capacity, considering the set of

strings and their syntactic analyses generated by a
grammar

Two grammars can be strongly or weakly equivalent.

19 / 22

Towards more
complex grammar

systems
Some basic formal
language theory

Grammars

Automata

Complexity
Type 3

Type 2

Type 1

Type 0

Properties

Example for weakly equivalent grammars

Example string:

if x then if y then a else b

Grammar 1:


S→ if T then S else S,
S→ if T then S,
S→ a
S→ b
T→ x
T→ y



20 / 22

Towards more
complex grammar

systems
Some basic formal
language theory

Grammars

Automata

Complexity
Type 3

Type 2

Type 1

Type 0

Properties

First analysis:

S

S

b

elseS

S

a

thenT

y

if

thenT

x

if

Second analysis:

S

S

S

b

elseS

a

thenT

y

if

thenT

x

if

21 / 22

Towards more
complex grammar

systems
Some basic formal
language theory

Grammars

Automata

Complexity
Type 3

Type 2

Type 1

Type 0

Properties

Grammar 2 rules: A weakly equivalent grammar eliminating
the ambiguity (only licenses second structure).



S1→ if T then S1,
S1→ if T then S2 else S1,
S1→ a,
S1→ b,
S2→ if T then S2 else S2,
S2→ a
S2→ b
T→ x
T→ y



22 / 22

