## Towards more complex grammar systems Some basic formal language theory

L445 / L545

Spring 2017

(With thanks to Detmar Meurers)

<ロト <部 > < 目 > < 目 > 目 の < @

#### Overview

- ► Grammars, or: how to specify linguistic knowledge
- Automata, or: how to process with linguistic knowledge
- Levels of complexity in grammars and automata: The Chomsky hierarchy

4 D > 4 B > 4 E > 4 E > E 9 Q P

#### Grammars

A grammar is a 4-tuple  $(N, \Sigma, S, P)$  where

- ► N is a finite set of non-terminals
- $\triangleright$   $\Sigma$  is a finite set of **terminal symbols**, with  $N \cap \Sigma = \emptyset$
- ▶ S is a distinguished **start symbol**, with  $S \in N$
- ▶ *P* is a finite set of **rewrite rules** of the form  $\alpha \rightarrow \beta$ , with  $\alpha, \beta \in (N \cup \Sigma)*$  and  $\alpha$  including at least one non-terminal symbol.

### A simple example

 $N = \{S, NP, VP, V_i, V_t, V_s\}$ 

 $\Sigma$  = {John, Mary, laughs, loves, thinks}

S = S

$$P = \left\{ \begin{array}{cccc} S & \rightarrow & \text{NP VP} & \begin{array}{c} \text{NP} & \rightarrow & \text{John} \\ \text{NP} & \rightarrow & \text{Mary} \end{array} \right.$$

$$P = \left\{ \begin{array}{cccc} VP & \rightarrow & V_i \\ VP & \rightarrow & V_t \text{ NP} \\ VP & \rightarrow & V_s \text{ S} \end{array} \right. \left. \begin{array}{c} V_i & \rightarrow & \text{laughs} \\ V_t & \rightarrow & \text{loves} \\ V_s & \rightarrow & \text{thinks} \end{array} \right.$$

### How does a grammar define a language?

Assume  $\alpha, \beta \in (N \cup \Sigma)^*$ , with  $\alpha$  containing at least one non-terminal.

- ► A **sentential form** for a grammar G is defined as:
  - ► The start symbol S of G is a sentential form.
  - If  $\alpha\beta\gamma$  is a sentential form and there is a rewrite rule  $\beta \to \delta$ , then  $\alpha \delta \gamma$  is a sentential form.
- $\alpha$  (directly or immediately) **derives**  $\beta$  if  $\alpha \to \beta \in P$ .
  - $\alpha \Rightarrow^* \beta$  if  $\beta$  is derived from  $\alpha$  in zero or more steps
  - $\alpha \Rightarrow^+ \beta$  if  $\beta$  is derived from  $\alpha$  in one or more steps
- ► A sentence is a sentential form consisting only of terminal symbols.
- ▶ The **language** L(G) generated by the grammar G is the set of all sentences which can be derived from the start symbol S, i.e.,  $L(G) = \{ \gamma | S \Rightarrow^* \gamma \}$

4 D > 4 B > 4 E > E > 9 Q @

# Processing with grammars: automata

An automaton in general has three components:

- ► an **input tape**, divided into squares with a read-write head positioned over one of the squares
- ► an auxiliary memory characterized by two functions
  - fetch: memory configuration → symbols
  - store: memory configuration × symbol → memory configuration
- ▶ and a finite-state control relating the two components.

### Different levels of complexity in grammars & automata

Let  $A, B \in N$ ,  $x \in \Sigma$ ,  $\alpha, \beta, \gamma \in (\Sigma \cup N)*$ , and  $\delta \in (\Sigma \cup N)+$ :

| Type | Automaton |      | Grammar                                          |                   |
|------|-----------|------|--------------------------------------------------|-------------------|
|      | Memory    | Name | Rule                                             | Name              |
| 0    | Unbounded | TM   | $\alpha \rightarrow \beta$                       | General rewrite   |
| 1    | Bounded   | LBA  | $\beta A \gamma \rightarrow \beta \delta \gamma$ | Context-sensitive |
| 2    | Stack     | PDA  | $A \rightarrow \beta$                            | Context-free      |
| 3    | None      | FSA  | $A \rightarrow xB, A \rightarrow x$              | Right linear      |

#### Abbreviations:

- ► TM: Turing Machine
- ► LBA: Linear-Bounded Automaton
- ► PDA: Push-Down Automaton
- ► FSA: Finite-State Automaton

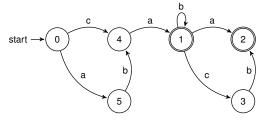
# A regular language example: (ab|c)ab \* (a|cb)?

#### Right-linear grammar:

$$N = \{Expr, X, Y, Z\} 
\Sigma = \{a,b,c\} 
S = Expr$$

$$P = \begin{cases}
Expr \rightarrow ab X & X \rightarrow a Y \\
Expr \rightarrow c X & Z \rightarrow a \\
Y \rightarrow b Y & Z \rightarrow cb \\
Y \rightarrow Z & Z \rightarrow Cb
\end{cases}$$

#### Finite-state transition network:



A right-linear grammar is a 4-tuple  $(N, \Sigma, S, P)$  with

Type 3: Right-Linear Grammars and FSAs

*P* a finite set of rewrite rules of the form  $\alpha \to \beta$ , with  $\alpha \in N$ and  $\beta \in \{\gamma \delta | \gamma \in \Sigma *, \delta \in \mathbb{N} \cup \{\epsilon\}\}\$ , i.e.:

- ▶ left-hand side of rule: a single non-terminal, and
- right-hand side of rule: a string containing at most one non-terminal, as the rightmost symbol

Right-linear grammars are formally equivalent to left-linear grammars.

#### A finite-state automaton consists of

- a tape
- ► a finite-state control
- no auxiliary memory

4日 1 4日 1 4日 1 4日 1 1 9 9 9

### Thinking about regular languages

- ► A language is regular iff one can define a FSM (or regular expression) for it.
  - ▶ Note the rough correspondence between state 0 & Expr, state 4 & X, and state 1 & Y
  - Think about why we need the rule  $Y \rightarrow Z$  (Could we write an FSM to more directly match the rules?)
- An FSM only has a fixed amount of memory, namely the number of states.
- ► Strings longer than the number of states (in particular, infinite ones) must result from a loop in the FSM.
- ▶ Pumping Lemma: if for an infinite string there is no such loop, the string cannot be part of a regular language (e.g.,  $a^n b^n$  is not regular).

### **Pumping Lemma**

**Pumping Lemma:** Let *L* be an infinite regular language. Then there are strings x, y, and z, s.t.  $y \neq \epsilon$  and  $xy^nz \in L$  for  $n \ge 0$ .

- ▶ If L is regular, then y can be "pumped"
- ▶ Used to show that a particular language isn't regular if no string can be pumped that way

**Example:** Trying to map  $a^nb^n$  to  $xy^nz$  leads to a contradiction

- 1. y is composed of all a's  $\rightarrow$  more a's than b's
- 2. y is composed of all b's  $\rightarrow$  more b's than a's
- 3. y is composed of a's & b's  $\rightarrow$  some b's precede some a's

#### Type 2: Context-Free Grammars and Push-Down Automata

A context-free grammar is a 4-tuple  $(N, \Sigma, S, P)$  with

*P* a finite set of rewrite rules of the form  $\alpha \to \beta$ , with  $\alpha \in N$ and  $\beta \in (\Sigma \cup N)$ \*, i.e.:

- left-hand side of rule: a single non-terminal, and
- right-hand side of rule: a string of terminals and/or non-terminals

#### A push-down automaton is a

- ▶ finite state automaton, with a
- stack as auxiliary memory

◆□ ト ◆□ ト ◆ 直 ト ◆ 直 ・ り へ ○

#### A context-free language example: $a^nb^n$

### Context-free grammar:

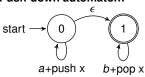
$$N = \{S\}$$

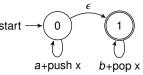
$$\Sigma = \{a, b\}$$

$$S = S$$

$$P = \left\{ \begin{array}{ccc} S & \rightarrow & a S b \\ S & \rightarrow & \epsilon \end{array} \right\}$$

#### Push-down automaton:





4 D > 4 D > 4 E > 4 E > E 990

#### Type 1: Context-Sensitive Grammars and Linear-Bounded Automata

#### A rule of a context-sensitive grammar

- rewrites at most one non-terminal from the left-hand side ( $\beta A \gamma \rightarrow \beta \delta \gamma$ ).
- right-hand side of a rule required to be at least as long as the left-hand side, i.e. only contains rules of the form

$$\alpha \to \beta$$
 with  $|\alpha| \le |\beta|$ 

and optionally  $S \to \epsilon$  with the start symbol S not occurring in any  $\beta$ .

#### A linear-bounded automaton is a

- finite state automaton, with an
- auxiliary memory which cannot exceed the length of the input string (but is not as restrictive as a stack).

# A context-sensitive language example: $a^n b^n c^n$

#### Context-sensitive grammar:

$$N = \{S, B, C\}$$

$$\Sigma = \{a, b\}$$

$$S = S$$

$$P = \begin{cases}
S & \rightarrow & a S B C, \\
S & \rightarrow & a b C, \\
b B & \rightarrow & b b, \\
b C & \rightarrow & b c, \\
c C & \rightarrow & c c, \\
C B & \rightarrow & B C
\end{cases}$$

Weakly equivalent way to derive  $C B \rightarrow B C$ : https://en.wikipedia.org/wiki/Context-sensitive\_grammar

### Type 0: General Rewrite Grammar & Turing **Machines**

- ▶ In a general rewrite grammar there are no restrictions on the form of a rewrite rule.
- A turing machine has an unbounded auxiliary memory.
- ► Any language for which there is a recognition procedure can be defined, but recognition problem is not decidable.

### Properties of different language classes

Languages are sets of strings, so that one can apply set operations to languages and investigate the results for particular language classes.

Some closure properties:

- ► All language classes are closed under union with themselves.
- ► All language classes are closed under intersection with regular languages.
- ► The class of context-free languages is not closed under intersection with itself.

Proof: The intersection of the two context-free languages  $L_1$  and  $L_2$  is not context free:

$$L_1 = \left\{ a^n b^n c^i | n \ge 1 \text{ and } i \ge 0 \right\}$$

$$L_2 = \left\{ a^j b^n c^n | n \ge 1 \text{ and } j \ge 0 \right\}$$

 $L_1 \cap \dot{L}_2 = \{a^n b^n c^n | n \ge 1\}$ 

4 D F 4 D F 4 E F 4 E F 990

### Criteria under which to evaluate grammar formalisms

There are three kinds of criteria:

- ► linguistic naturalness
- mathematical power

The weaker the type of grammar:

- ▶ the stronger the claim made about possible languages
- ▶ the greater the potential efficiency of the parsing procedure

Reasons for choosing a stronger grammar class:

- ▶ to capture the empirical reality of actual languages
- ► to provide for elegant analyses capturing more generalizations (→ more "compact" grammars)

computational effectiveness and efficiency

# Accounting for the facts vs. linguistically sensible analyses

Looking at grammars from a linguistic perspective, one can distinguish their

- weak generative capacity, considering only the set of strings generated by a grammar
- strong generative capacity, considering the set of strings and their syntactic analyses generated by a grammar

Two grammars can be strongly or weakly equivalent.

Example for weakly equivalent grammars yestems basic formal

#### Example string:

if x then if y then a else b

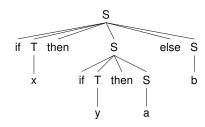
#### Grammar 1:

$$(S \rightarrow \text{if T then S else S,})$$
  
 $S \rightarrow \text{if T then S,}$   
 $S \rightarrow a$   
 $S \rightarrow b$   
 $T \rightarrow x$   
 $T \rightarrow y$ 

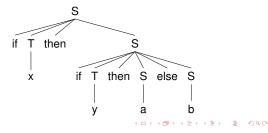
←□ → ←□ → ← □ → □ → ○ へ ○

4 D > 4 B > 4 E > 4 E > 9 Q C

# First analysis:



Second analysis:



Towards more complex grammar systems
Some basic formal

irammars

Properties

Automata

Complexity
Type 3
Type 2
Type 1

Properties

**Grammar 2 rules:** A weakly equivalent grammar eliminating the ambiguity (only licenses second structure).

$$\begin{cases} S1 \rightarrow \text{if T then } S1, \\ S1 \rightarrow \text{if T then } S2 \text{ else } S1, \\ S1 \rightarrow a, \\ S1 \rightarrow b, \\ S2 \rightarrow \text{if T then } S2 \text{ else } S2, \\ S2 \rightarrow a \\ S2 \rightarrow b \\ T \rightarrow x \\ T \rightarrow y \end{cases}$$

20/22 Towards more

complex grammar systems Some basic formal language theory

rammars

Complexity

Type 3
Type 2
Type 1
Type 0

Properties