
Towards more
complex grammar

systems
Some basic formal
language theory

Grammars

Automata

Complexity
Type 3

Type 2

Type 1

Type 0

Properties

Towards more complex grammar systems
Some basic formal language theory

L445 / L545

Spring 2017

(With thanks to Detmar Meurers)

1 / 22

Towards more
complex grammar

systems
Some basic formal
language theory

Grammars

Automata

Complexity
Type 3

Type 2

Type 1

Type 0

Properties

Overview

I Grammars, or: how to specify linguistic knowledge
I Automata, or: how to process with linguistic knowledge
I Levels of complexity in grammars and automata:

The Chomsky hierarchy
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Grammars

A grammar is a 4-tuple (N,Σ,S,P) where

I N is a finite set of non-terminals
I Σ is a finite set of terminal symbols,

with N ∩ Σ = ∅
I S is a distinguished start symbol, with S ∈ N
I P is a finite set of rewrite rules of the form α→ β, with
α, β ∈ (N ∪ Σ)∗ and α including at least one
non-terminal symbol.
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A simple example

N = {S, NP, VP, Vi , Vt , Vs}
Σ = {John, Mary, laughs, loves, thinks}
S = S

P =



S → NP VP

VP → Vi

VP → Vt NP
VP → Vs S

NP → John
NP → Mary

Vi → laughs
Vt → loves
Vs → thinks


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How does a grammar define a language?

Assume α, β ∈ (N ∪ Σ)∗, with α containing at least one
non-terminal.

I A sentential form for a grammar G is defined as:
I The start symbol S of G is a sentential form.
I If αβγ is a sentential form and there is a rewrite rule
β→ δ, then αδγ is a sentential form.

I α (directly or immediately) derives β if α→ β ∈ P.
I α⇒∗ β if β is derived from α in zero or more steps
I α⇒+ β if β is derived from α in one or more steps

I A sentence is a sentential form consisting only of
terminal symbols.

I The language L(G) generated by the grammar G is the
set of all sentences which can be derived from the start
symbol S, i.e., L(G) = {γ|S ⇒∗ γ}
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Processing with grammars: automata

An automaton in general has three components:

I an input tape, divided into squares with a read-write
head positioned over one of the squares

I an auxiliary memory characterized by two functions
I fetch: memory configuration→ symbols
I store: memory configuration × symbol→ memory

configuration

I and a finite-state control relating the two components.
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Different levels of complexity in grammars &
automata

Let A ,B ∈ N, x ∈ Σ, α, β, γ ∈ (Σ ∪ N)∗, and δ ∈ (Σ ∪ N)+:

Type Automaton Grammar
Memory Name Rule Name

0 Unbounded TM α→ β General rewrite
1 Bounded LBA β A γ → β δ γ Context-sensitive
2 Stack PDA A → β Context-free
3 None FSA A → xB, A → x Right linear

Abbreviations:
I TM: Turing Machine
I LBA: Linear-Bounded Automaton
I PDA: Push-Down Automaton
I FSA: Finite-State Automaton
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Type 3: Right-Linear Grammars and FSAs

A right-linear grammar is a 4-tuple (N,Σ,S,P) with

P a finite set of rewrite rules of the form α→ β, with α ∈ N
and β ∈ {γδ|γ ∈ Σ∗, δ ∈ N ∪ {ε}}, i.e.:

I left-hand side of rule: a single non-terminal, and
I right-hand side of rule: a string containing at most one

non-terminal, as the rightmost symbol

Right-linear grammars are formally equivalent to left-linear
grammars.

A finite-state automaton consists of

I a tape
I a finite-state control
I no auxiliary memory
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A regular language example: (ab |c)ab ∗ (a |cb)?

Right-linear grammar:

N = {Expr, X, Y, Z}
Σ = {a,b,c}
S = Expr

P =



Expr → ab X
Expr → c X

Y → b Y
Y → Z

X → a Y

Z → a
Z → cb
Z → ε



Finite-state transition network:

0start

5

4 1

3

2

c

a b

a
b
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c b

9 / 22

Towards more
complex grammar

systems
Some basic formal
language theory

Grammars

Automata

Complexity
Type 3

Type 2

Type 1

Type 0

Properties

Thinking about regular languages

I A language is regular iff one can define a FSM (or
regular expression) for it.

I Note the rough correspondence between state 0 &
Expr, state 4 & X, and state 1 & Y

I Think about why we need the rule Y→ Z (Could we
write an FSM to more directly match the rules?)

I An FSM only has a fixed amount of memory, namely the
number of states.

I Strings longer than the number of states (in particular,
infinite ones) must result from a loop in the FSM.

I Pumping Lemma: if for an infinite string there is no such
loop, the string cannot be part of a regular language
(e.g., anbn is not regular).
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Pumping Lemma

Pumping Lemma: Let L be an infinite regular language.
Then there are strings x, y, and z, s.t. y , ε and xynz ∈ L for
n ≥ 0.
I If L is regular, then y can be “pumped”
I Used to show that a particular language isn’t regular if

no string can be pumped that way

Example: Trying to map anbn to xynz leads to a
contradiction

1. y is composed of all a’s→ more a’s than b ’s
2. y is composed of all b ’s→ more b ’s than a’s
3. y is composed of a’s & b ’s→ some b ’s precede some

a’s
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Type 2: Context-Free Grammars and
Push-Down Automata

A context-free grammar is a 4-tuple (N,Σ,S,P) with

P a finite set of rewrite rules of the form α→ β, with α ∈ N
and β ∈ (Σ ∪ N)∗, i.e.:

I left-hand side of rule: a single non-terminal, and
I right-hand side of rule: a string of terminals and/or

non-terminals

A push-down automaton is a
I finite state automaton, with a
I stack as auxiliary memory
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A context-free language example: anbn

Context-free grammar:
N = {S}
Σ = {a, b}
S = S

P =
{

S → a S b
S → ε

}

Push-down automaton:

0start 1

ε

a+push x b+pop x
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Type 1: Context-Sensitive Grammars and
Linear-Bounded Automata

A rule of a context-sensitive grammar

I rewrites at most one non-terminal from the left-hand
side (β A γ → β δ γ).

I right-hand side of a rule required to be at least as long
as the left-hand side, i.e. only contains rules of the form

α→ β with |α| ≤ |β|
and optionally S → ε with the start symbol S not
occurring in any β.

A linear-bounded automaton is a

I finite state automaton, with an
I auxiliary memory which cannot exceed the length of the

input string (but is not as restrictive as a stack).
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A context-sensitive language example: anbncn

Context-sensitive grammar:
N = {S, B, C}
Σ = {a, b}
S = S

P =



S → a S B C,
S → a b C,
b B → b b,
b C → b c,
c C → c c,
C B → B C



Weakly equivalent way to derive C B→ B C:
https://en.wikipedia.org/wiki/Context-sensitive grammar
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Type 0: General Rewrite Grammar & Turing
Machines

I In a general rewrite grammar there are no restrictions
on the form of a rewrite rule.

I A turing machine has an unbounded auxiliary memory.
I Any language for which there is a recognition procedure

can be defined, but recognition problem is not
decidable.
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Properties of different language classes

Languages are sets of strings, so that one can apply set
operations to languages and investigate the results for
particular language classes.

Some closure properties:
I All language classes are closed under union with

themselves.
I All language classes are closed under intersection

with regular languages.
I The class of context-free languages is not closed

under intersection with itself.
Proof: The intersection of the two context-free
languages L1 and L2 is not context free:

I L1 =
{
anbnc i |n ≥ 1 and i ≥ 0

}

I L2 =
{
a jbncn |n ≥ 1 and j ≥ 0

}

I L1 ∩ L2 = {anbncn |n ≥ 1}
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Criteria under which to evaluate grammar
formalisms

There are three kinds of criteria:
I linguistic naturalness
I mathematical power
I computational effectiveness and efficiency

The weaker the type of grammar:
I the stronger the claim made about possible languages
I the greater the potential efficiency of the parsing

procedure

Reasons for choosing a stronger grammar class:
I to capture the empirical reality of actual languages
I to provide for elegant analyses capturing more

generalizations (→ more “compact” grammars)
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Accounting for the facts
vs. linguistically sensible analyses

Looking at grammars from a linguistic perspective, one can
distinguish their
I weak generative capacity, considering only the set of

strings generated by a grammar
I strong generative capacity, considering the set of

strings and their syntactic analyses generated by a
grammar

Two grammars can be strongly or weakly equivalent.
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Example for weakly equivalent grammars

Example string:

if x then if y then a else b

Grammar 1:


S→ if T then S else S,
S→ if T then S,
S→ a
S→ b
T→ x
T→ y


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First analysis:

S

S

b

elseS

S

a

thenT

y

if

thenT

x

if

Second analysis:

S

S

S

b

elseS

a

thenT

y

if

thenT

x

if
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Grammar 2 rules: A weakly equivalent grammar eliminating
the ambiguity (only licenses second structure).



S1→ if T then S1,
S1→ if T then S2 else S1,
S1→ a,
S1→ b,
S2→ if T then S2 else S2,
S2→ a
S2→ b
T→ x
T→ y


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