
Parsing German: How Much Morphology Do We Need?

Wolfgang Maier
Heinrich-Heine-Universität Düsseldorf

Düsseldorf, Germany
maierw@hhu.de

Sandra Kübler
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Abstract

We investigate how the granularity of POS tags influences POS tagging, and furthermore, how
POS tagging performance relates to parsing results. For this, we use the standard “pipeline”
approach, in which a parser builds its output on previously tagged input. The experiments are
performed on two German treebanks, using three POS tagsets of different granularity, and six
different POS taggers, together with the Berkeley parser. Our findings show that less granularity
of the POS tagset leads to better tagging results. However, both too coarse-grained and too
fine-grained distinctions on POS level decrease parsing performance.

1 Introduction

German is a non-configurational language with a moderately free word order in combination with a case
system. The case of a noun phrase complement generally is a direct indicator of the phrase’s grammatical
function. For this reason, a morphological analysis seems to be a prerequisite for a syntactic analysis.
However, in computational linguistics, parsing was developed for English without the use of morpho-
logical information, and this same architecture is used for other languages, including German (Kübler et
al., 2006; Petrov and Klein, 2008). An easy way of introducing morphological information into parsing,
without modifying the architecture, is to attach morphology to the part-of-speech (POS) tagset. However,
this makes POS tagging more complex and thus more difficult.

In this paper, we investigate the following questions: 1) How well do the different POS taggers work
with tagsets of a varying level of morphological granularity? 2) Do the differences in POS tagger per-
formance translate into similar differences in parsing quality? Complementary POS tagging results and
preliminary parsing results have been published in German in Kübler and Maier (2013).

Our experiments are based on two different treebanks for German, TiGer (Brants et al., 2002) and
TüBa-D/Z (Telljohann et al., 2012). Both treebanks are based on the same POS tagset, the Stuttgart-
Tübingen Tagset (STTS) (Schiller et al., 1995). We perform experiments with three variants of the tagset:
The standard STTS, the Universal Tagset (UTS) (Petrov et al., 2012) (a language-independent tagset),
and an extended version of the STTS that also includes morphological information from the treebanks
(STTSmorph). STTS consists of 54 tags, UTS uses 12 basic tags, and the morphological variants of the
STTS comprise 783 and 524 POS tags respectively. We use a wide range of POS taggers, which are
based on different strategies: Morfette (Chrupala et al., 2008) and RF-Tagger (Schmid and Laws, 2008)
are designed for large morphological tagsets, the Stanford tagger (Toutanova et al., 2003) is based on a
maximum entropy model, SVMTool (Giménez and Màrquez, 2004) is based on support vector machines,
TnT (Brants, 2000) is a Markov model trigram tagger, and Wapiti (Lavergne et al., 2010) a conditional
random field tagger. For our parsing experiments, we use the Berkeley parser (Petrov and Klein, 2007b;
Petrov and Klein, 2007a).
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Our findings for POS tagging show that Morfette reaches the highest accuracy on UTS and overall on
unknown words while TnT reaches the best performance for STTS and the RF-Tagger for STTSmorph.
These trends are stable across both treebanks. As for the parsing results, using STTS results in the best
accuracies. For TiGer, POS tags assigned by the parser perform better in combination with UTS and
STTSmorph. For TiGer in combination with STTS and all variants in TüBa-D/Z, there are only minor
differences between the parser assigned POS tags and those by TnT.

The remainder of the article is structured as follows. In section 2, we review previous work. Section
3 presents the different POS tagsets. Section 4 describes our experimental setup. The POS tagging and
parsing results are discussed in the sections 5 and 6, respectively. Section 7 concludes the article.

2 Previous Work

In this section, we present a review of the literature that has previously examined the correlation of
POS tagging and parsing under different aspects. While this overview is not exhaustive, it presents the
major findings related to our work. The issues examined can be regarded under two orthogonal aspects,
namely, the parsing model used (data-driven or grammar-based), and the question of how to disambiguate
between various tags for a single word.

Some work has been done on investigating different tagsets for individual languages. Collins et al.
(1999) adapt the parser of Collins (1999) for the Czech Prague Dependency Treebank. Using an external
lexicon to reduce data sparseness for word forms did not result in any improvement, but adding case to the
POS tagset had a positive effect. Seddah et al. (2009) investigate the use of different parsers on French.
They also investigate two tagsets with different granularity and come to the conclusion that the finer
grained tagset leads to higher parser performance. The work that is closest to ours is work by Marton et
al. (2013), who investigate the optimal POS tagset for parsing Arabic. They come to the conclusion that
adding definiteness, person, number, gender, and lemma information to the POS tagset improve parsing
accuracy. Both Dehdari et al. (2011) and Szántó and Farkas (2014) investigate automatic methods for
selecting the best subset of morphological features, the former for Arabic, the latter for Basque, French,
German, Hebrew, and Hungarian. However, note that Szántó and Farkas (2014) used the data from the
SPMRL shared task 2013, which does not contain grammatical functions in the syntactic annotations.
Both approaches found improvements for subsets of morphological features.

Other works examine, also within a “pipeline” method, possibilities for ambiguity reduction through
modification of tagsets, or of the lexicon by tagset reduction, or through word-clustering. Lakeland
(2005) uses lexicalized parsing à la Collins (1999). Similarly to the more recent work by Koo et al.
(2008) or Candito and Seddah (2010), he addresses the question of how to optimally disambiguate for
parsing on the lexical level by clustering. A word cluster is thereby seen as an equivalence class of
words and assumes to a certain extent the function of a POS tag, but can be adapted to the training
data. Le Roux et al. (2012) address the issue of data sparseness on the lexical level with PCFG parsing
with the morphologically rich language Spanish. The authors use a reimplementation of the Berkeley
parser. They show that parsing results can be improved by simplifying the POS tagset, as well as by
lemmatization, since both approaches reduce data sparseness.

As already mentioned, a POS tag can be seen as an equivalence class of words. Since in the “pipeline”
approach, the parse tree is built on POS tags, it is possible that a POS tagset is optimal from a linguistic
point of view, but that its behavior is not optimal with respect to parsing results, because relevant lexical
information is hidden from the parse tree by the POS tagset. While Koo et al. (2008) overcome this
deficit by automatically searching for “better” clusters, other works copy certain lexical information into
the actual tree, e.g., by using grammatical function annotation (Versley, 2005; Versley and Rehbein,
2009). Seeker and Kuhn (2013) complement the “pipeline” model (using a dependency parser (Bohnet,
2010)) by an additional component that uses case information as a filter for the parser. They achieve
improvements for Hungarian, German and Czech.

A number of works develop models for simultaneous POS tagging or morphological segmentation
and parsing. Based on work by Ratnaparkhi (1996) and Toutanova and Manning (2000), Chen and Kit
(2011) investigate disambiguation on the lexical level. They assume that local, i.e., sequential but not



tag description tag description tag description
NOUN noun PRON pronoun CONJ conjunction
VERB verb DET determiner, article PRT particle
ADJ adjective ADP preposition, postposition . punctuation
ADV adverb NUM numeral X everything else

Table 1: The 12 tags of the Universal Tagset.

hierarchical, features are decisive for the quality of POS tagging and note that a “pipeline” model does not
take this into account since the parser effectively performs the POS disambiguation. On these grounds,
they present a factorized model for PCFG parsing which separates parsing into a discriminative lexical
model (with local features) and the actual parsing model, to be combined with a product-of-experts
(Hinton, 1999).

Particularly in the dependency parsing literature, combined models for simultaneous POS tagging and
parsing can be found. Research has concentrated on languages that require additional segmentation on
the word level, such as Chinese (Hatori et al., 2011) or Hebrew (Goldberg and Tsarfaty, 2008). A new
approach by Bohnet and Nivre (2012) was also evaluated on German. Results for POS tagging and
parsing of German by means of a constraint grammar can be found in Daum et al. (2003) as well as
in Foth et al. (2005). However, since these approaches are only marginally related to our approach, we
forego a further overview.

3 The Three Tagset Variants

In our experiments, we use three POS tagset variants: The standard Stuttgart-Tübingen Tagset (STTS),
the Universal Tagset (UTS) (Petrov et al., 2012), and an extended version of the STTS that also includes
morphological information from the treebanks (STTSmorph). Since the two treebanks differ in their
morphological annotation, in this variant, the tags differ between the two treebanks: For TiGer, we have
783 possible complex POS tags, and for TüBa-D/Z, there are 524. By complex tags, we mean a combi-
nation of an STTS tag with the morphological tag. Also, note that not all of the possible combinations
are attested in the treebanks.

The UTS consists of 12 basic POS tags, shown in table 11. It was developed for multilingual appli-
cations, in which a common tagset is of importance, such as for a multilingual POS tagger. The UTS
only represents the major word classes. Thus, this tagset should result in a high POS tagging accuracy
since only major distinctions are made. However, it is unclear whether these coarse distinctions provide
enough information for a syntactic analysis.

The STTS is based on distributional regularities of German. It contains 54 tags and thus models more
fine grained distinctions than the UTS. For a list of tags, see Schiller et al. (1995). The finer distinctions
in STTS mostly concern word classes, but there is also a distinction between finite and infinite verbs.
This distinction is important for the syntactic analysis, especially in TüBa-D/Z, but it can be difficult to
make by a POS tagger with a limited context.

The STTS can be extended by a morphological component. Both treebanks provide a morphological
analysis, but the analyses model different decisions. In TiGer, a set of 585 different feature combinations
is used, which can be combined from the features listed in table 2. The sentence in (1) gives an example
of the combination of the STTS and morphology, which are separated by the % sign. The feature –
means that there are no morphological features for the given POS tag.

(1) Konzernchefs
NN%Nom.Pl.Masc

lehnen
VVFIN%3.Pl.Pres.Ind

den
ART%Acc.Sg.Masc

Milliardär
NN%Acc.Sg.Masc

als
APPR%–

US-Präsidenten
NN%Acc.Sg.Masc

ab
PTKVZ%–

/
$(%–

’Corporate CEOs disapprove of the billionaire as US president /’
1For a mapping from STTS to UTS, cf. https://code.google.com/p/universal-pos-tags/.



feature description
ambiguous: *
gender masculine (Masc), feminine (Fem), neuter (Neut)
gradation positive (Pos), comparative (Comp), superlative (Sup)
case nominative (Nom), genitive (Gen), dative (Dat), accusative (Akk)
mode indicative (Ind), conjunctive (Subj), imperative (Imp)
number singular (Sg), plural (Pl)
person 1., 2., 3.
tense present (Pres), past (Past)

Table 2: The morphological categories in TiGer.

feature description
ambiguous *
gender masculine (m), feminine (f), neuter (n)
case nominative (n), genitive (g), dative (d), accusative (a)
number singular (s), plural (p)
person 1., 2., 3.
tense present (s), past (t)
mode indicative (i), conjunctive (k)

Table 3: The morphological categories in TüBa-D/Z.

Out of the 585 possible combinations of morphological features, 271 are attested in TiGer. In combi-
nation with the STTS, this results in 783 combinations of STTS and morphological tags. Out of those,
761 occur in the training set. However, we expect data sparseness during testing because of the high
number of possible tags. For this reason, we calculated which percentage of the tags in the development
and test set are known combinations. We found that 25% and 30%, respectively, do not occur in the train-
ing set. However, note that the number of tags in the development and test sets is considerably smaller
than the number of tags in the training set.

In TüBa-D/Z, there are 132 possible morphological feature combinations which can be combined from
the features listed in table 3. The sentence in (2) gives an example of the combination of the STTS and
morphology.

(2) Aber
KON%–

Bremerhavens
NE%gsn

AfB
NE%nsf

fordert
VVFIN%3sis

jetzt
ADV%–

Untersuchungsausschuß
NN%asm

’But the Bremerhaven AfB now demands a board of inquiry’

Out of the 132 possible feature combinations, 105 are attested in TüBa-D/Z. In combination with the
STTS, this results in 524 combinations of STTS and morphological tags. Out of those, 513 occur in the
training set. For the development and test set, we found that 16% and 18% respectively do not occur in
the training set. These percentages are considerably lower than the ones for TiGer.

Since the tagsets that include morphology comprise several hundred different POS tags, we expect
tagging to be more difficult, resulting in lower accuracies. We also expect that the TüBa-D/Z tagset
is better suited for POS tagging than the TiGer set because of its smaller tagset size and its higher
coverage on the development and test set. It is, however, unknown whether this information can be used
successfully in parsing.
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Figure 1: A sentence from TiGer.

4 Experimental Setup

4.1 Treebanks
We use the treebanks TiGer (Brants et al., 2002), version 2.2, and TüBa-D/Z (Telljohann et al., 2012),
release 8. Both are built on newspaper text, Frankfurter Rundschau for TiGer and taz for TüBa-D/Z.
Both treebanks use the same POS tagset with only one minor difference in the naming of one POS label.
However, the treebanks differ considerably in the syntactic annotation scheme. While TiGer uses a very
flat annotation involving crossing branches, the annotations in TüBa-D/Z are more hierarchical, and long
distance relations are modeled via grammatical function labels rather than via attachment. Figures 1 and
2 show examples.

For preprocessing, we follow the standard practices from the parsing community. In both treebanks,
punctuation and other material, such as parentheses, are not included in the annotation, but attached to a
virtual root node. We attach the respective nodes to the tree using the algorithm described by Maier et
al. (2012) so that every sentence corresponds to exactly one tree. In a nutshell, this algorithm uses the
left and right terminal neighbors as attachment targets. In TiGer, we then remove the crossing branches
using a two-stage process. In a first step, we apply the transformation described by Boyd (2007). This
transformation introduces a new non-terminal for every continuous block of a discontinuous constituent.
We keep a flag on each of the newly introduced nodes that indicates if it dominates the head daughter of
the original discontinuous node. Subsequently, we delete all those nodes for which this flag is false.

For both POS tagging and parsing, we use the same split for training, development, and test. We use
the first half of the last 10 000 sentences in TiGer for development and the second half for testing. The
remaining 40 472 sentences are used for training. Accordingly, in order to ensure equal conditions, we
use the first 40 472 sentences in TüBa-D/Z for training, and the first and second half of the following
10 000 sentences for development and testing. The remaining sentences in TüBa-D/Z are not used.

4.2 POS Taggers
We employ six different POS tagger, each of them using a different tagging technique. Morfette (Chru-
pala et al., 2008), in its current implementation based on averaged Perceptron, is a tool designed for the
annotation of large morphological tagsets. Since none of the other POS taggers have access to lemmas,
we only provide full word forms to Morfette as well, which may inhibit its generalization capability.
The RF-Tagger (Schmid and Laws, 2008) assumes a tagset in a factorized version. I.e., the POS tag
VVFIN%3sis in sentence (2) would be represented as VVFIN.3.s.i.s, where the dots indicate different
subcategories, which are then treated separately by the POS tagger. It is based on a Markov model, but
the context size is determined by a decision tree. The Stanford tagger (Toutanova et al., 2003) is based
on a maximum entropy model, and SVMTool (Giménez and Màrquez, 2004) is based on support vector
machines. TnT (Brants, 2000; Brants, 1998), short for trigrams and tags, is a Markov model POS tagger.
It uses an interpolation between uni-, bi- and trigrams as probability model. TnT has a sophisticated
mechanism for tagging unknown words. We also use Wapiti (Lavergne et al., 2010) a conditional ran-
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Figure 2: A sentence from TüBa-D/Z.

dom field tagger. Since conditional random fields were developed for sequence tagging, this POS tagger
is expected to perform well.

All POS taggers are used with default settings. For the Stanford tagger, we use the bi-directional model
based on a context of 5 words. For SVMTool, we use the processing from left to right in combination
with features based on word and POS trigrams and word length, prefix and suffix information. Wapiti is
trained on uni-, bi-, and trigrams. Features used in training consist of tests concerning the alphanumeric,
upper or lower case characteristics, prefixes and suffixes of length three, and all possible POS tags for a
word.

For POS tagging evaluation, we use the script provided by TnT since it also allows us to calculate
accuracy on known and unknown words.

4.3 Parser

We use the Berkeley parser (Petrov and Klein, 2007b; Petrov and Klein, 2007a). We chose the Berkeley
parser because we are aware of the fact that there are considerable differences in the tagset sizes, which
a plain PCFG parser cannot process successfully. The Berkeley parser split/merge capabilities provide a
way of smoothing over these differences. For parser evaluation, we use our own implementation of the
PARSEVAL metrics. We report labeled precision (LP), labeled recall (LR), and the labeled F-score(LF1).
Note that the labeled evaluation does not only look at constituent labels but also at grammatical functions
attached to the constituents, e.g. NP-SBJ for a subject NP. This is a considerably more difficult task for
German because of the relatively free word order. We also provide POS tagging accuracy in the parse
trees since the Berkeley parser adapts POS tags from the input if they do not fit its syntax model.

5 POS Tagging Results

5.1 The Three Tagset Variants

The results for the POS tagging evaluation are shown in table 4. We are aware of the fact that the results
are not directly comparable across the different POS tagsets and across different treebanks since the
corresponding tagging tasks differ in the level of difficulty. Any interpretation must therefore be taken
with a grain of salt, but we think that it is important to evaluate POS tagging on its own, especially
since it is not always the case that a larger label set automatically results in a more difficult task. The
results show that UTS, i.e., the variant with the least information, results in the highest POS tagging
results, between 96.67% and 98.54%. In tagging with the STTS, we reach a lower accuracy between



TiGer TüBa-D/Z
Tagset Tagger dev test dev test
UTS Morfette 98.51 98.09 98.25 98.49

RF-Tagger 97.89 97.41 97.69 97.96
Stanford 97.88 96.83 97.11 97.26
SVMTool 98.54 98.01 98.09 98.28
TnT 97.94 97.48 97.72 97.92
Wapiti 97.54 96.67 97.47 97.80

STTS Morfette 94.12 93.23 92.95 93.41
RF-Tagger 97.04 96.24 96.68 96.84
RF-Tagger (fact.) 97.05 96.26 96.69 96.85
Stanford 96.26 95.15 95.63 95.79
SVMTool 97.06 96.22 96.46 96.69
TnT 97.15 96.29 96.92 97.00
Wapiti 92.93 91.62 90.99 91.81

STTSmorph Morfette 82.71 80.10 81.19 82.26
RF-Tagger 86.56 83.90 85.68 86.31
Stanford – – – –
SVMTool 82.47 79.53 80.33 81.31
TnT 85.77 82.77 84.67 85.45
Wapiti 79.83 75.92 77.27 78.29

STTSmorph → STTS TnT 97.08 96.15 96.78 96.82

Table 4: POS tagging results using three versions of the German POS tagset and two treebanks.

90.99% and 97.15%. When we include the morphological information, we reach considerably lower
results, between 75.92% and 86.56%. In other words, this shows that the more information there is in
the POS tagset, the harder the POS tagging task is. POS tagging with morphological information is the
most difficult task. We also see that there are no results for the Stanford POS tagger in the morphological
setting. We were unable to run these experiments, even when we used a high-memory cluster with access
to 120g of memory. It seems that the Stanford tagger is incapable of handling the large tagset sizes in the
setting using morphological information. Additionally, our assumption that the morphological tagset of
TüBa-D/Z is less difficult to annotate because of its smaller tagset size is not borne out. The variation of
results on TüBa-D/Z is often less than between the treebanks, across POS taggers.

If we compare the result of the different POS taggers, we see that for the different tagset variants,
different POS taggers perform best: For UTS, surprisingly, Morfette reaches the highest results, with
the exception of the TiGer development set, for which SVMTool performs slightly better. In general,
SVMTool is very close in accuracy to Morfette for this tagset variant. For STTS, TnT outperforms
all other POS taggers, and SVMTool is a close second. For STTSmorph, the RF-Tagger reaches the
highest results. For the RF-Tagger in combination with the STTS, we performed 2 experiments, one
using the standard STTS and one in which the STTS tags are factored, such that VVFIN is factored
into V.V.FIN. The latter variant reaches minimally higher results. In all settings, Wapiti is the weakest
approach; the difference between Wapiti and the best performing POS tagger reaches 6-7 percent points
for STTSmorph. This is rather surprising given that POS tagging is a typical sequence tagging task, for
which CRFs were developed.

Another fact worth mentioning is that there are considerable differences in POS tagging accuracy
between the development and test set in both treebanks. For both STTS variants, these differences are
often larger than the differences between individual POS taggers on the same data set. Thus, in the
STTSmorph setting, the difference for TnT between the development and test set in TiGer is 3 percent
points while the differences between TnT and SVMTool and Morfette respectively are less.

One last question that we investigated concerns the effect of the morphological information on POS



TiGer TüBa-D/Z
dev test dev test

Tagset Tagger Known Unkn. Known Unkn. Known Unkn. Known Unkn.
UTS Morfette 98.66 96.74 98.32 96.04 98.54 95.46 98.69 96.39

RF-Tagger 98.15 94.64 97.82 93.65 98.28 92.02 98.35 93.85
Stanford 99.05 91.85 98.78 87.70 98.94 79.30 98.92 79.69
SVMTool 98.81 95.26 98.41 94.45 98.63 92.89 98.66 94.27
TnT 98.06 96.50 97.67 95.74 98.07 94.28 98.25 95.25
Wapiti 98.94 80.71 98.51 80.04 98.68 85.79 98.83 86.91

STTS Morfette 94.42 90.60 93.56 90.24 93.17 90.83 93.59 91.57
RF-Tagger 97.80 87.92 97.30 86.71 97.62 87.59 97.73 87.52
RF-T. (fact.) 97.78 88.21 97.28 87.09 97.63 87.65 97.73 87.51
Stanford 98.16 73.56 97.75 71.60 97.96 73.04 97.97 72.64
SVMTool 97.86 87.41 97.26 86.82 97.50 86.47 97.60 87.05
TnT 97.80 89.25 97.21 87.95 97.65 89.78 97.72 89.33
Wapiti 94.51 73.78 93.48 74.83 93.21 69.45 93.71 71.74

STTSmorph Morfette 84.30 63.50 82.43 58.98 82.91 64.53 83.95 64.42
RF-Tagger 88.34 65.09 86.38 61.47 87.70 66.20 88.25 65.80
SVMTool 84.67 55.89 82.40 53.58 82.87 55.81 83.61 57.01
TnT 87.62 63.41 85.55 57.65 86.91 62.95 87.61 62.55
Wapiti 83.91 30.51 81.43 26.08 82.05 31.05 82.83 30.29

Table 5: Results for the different POS taggers for known and unknown words.

tagging accuracy. We know that when we use morphological information, the POS tagging task is more
difficult. However, it is possible that the mistakes that occur concern only the morphological information
while the POS tags minus morphology may be predicted with equal or even higher accuracy. In order to
investigate this problem, we used the STTSmorph output of TnT and deleted all the morphological infor-
mation, thus leaving only the STTS POS tags. We then evaluated these POS tags against the gold STTS
tags. The results are shown in the last row in table 4, marked as STTSmorph → STTS. A comparison of
these results with the TnT results for STTS shows that the POS tagger reaches a higher accuracy when
trained directly on STTS rather than on STTSmorph, with a subsequent deletion of the morphological
information. This means that the morphological information is not useful but rather harmful in POS
tagging.

5.2 Evaluating on Known and Unknown Words

In a next set of experiments, we investigate how the different POS taggers perform on known and un-
known words. We define all words from the development and test set as known if the appear in the
training set. If they do not, they are considered unknown words. Note, however, that even if a word is
known, we still may not have the full set of POS tags in its ambiguity set. This is especially relevant for
the larger tagsets where the ambiguity rate per word is higher.

In TiGer, 7.64% of the words in the development set are unknown, 9.96% in the test set. In TüBa-D/Z,
9.36% of the words in the development set are unknown, 8.64% in the test set. Note that this corresponds
to the levels of accuracy in table 4.

The results of the evaluation on known and unknown words are shown in table 5. These results show
that the Stanford POS tagger produces the highest accuracies for known words for UTS and STTS (note
that it could not be used for STTSmorph). For unknown words, Morfette reaches the highest results for
UTS and STTS, with TnT reaching the second highest results. For STTSmorph, the RF-Tagger reaches
the highest accuracy on both known and unknown words. The results for the RF-Tagger for STTS show
that the factored version performs better on unknown words than the standard one. It is also noticeable
that Wapiti, the CRF POS tagger, has the lowest performance on unknown words: For UTS, the results



TiGer TüBa-D/Z
Morphology dev test dev test
STTS 97.15 96.29 96.92 97.00
STTSmorph 85.77 82.77 84.67 85.45
agreement 86.04 83.08 84.96 85.77
case 88.10 86.47 87.48 87.91
number 95.60 94.19 95.24 95.41
number + person 95.55 94.11 95.18 95.24
verbal features 97.03 96.02 96.55 96.44

Table 6: The results for TnT with different morphological variants.

are 10-16 percent points lower that the ones by Morfette; for STTS, the difference reaches 16-23 percent
points, and for STTSmorph, about 35 percent points. This shows that in order to reach a reasonable
accuracy rate, Wapiti’s unknown word handling model via regular expressions must be extended further.
However, note that Wapiti’s results on known words are also lower than the best performing system’s,
thus showing that CRFs are less well suited for POS tagging than originally expected.

5.3 Evaluating Morphological Variants

In this set of experiments, we investigate whether there are subsets of STTSmorph that are relevant for
parsing and that would allow us to reach higher POS tagging and parsing accuracies than on the full set
of morphological features. The subsets were chosen manually to model our intuition on which features
may be relevant for parsing. We investigate the following subsets: all agreement features, case only,
number only, number + person, and only verbal features. In this set of experiments, we concentrate on
TnT because it has been shown to be the most robust across the different settings. The results of these
experiments are shown in table 6. For comparison, we also list the results for the original STTS and
STTSmorph settings from table 4.

The results show that there are morphological subsets that allow reliable POS accuracies: If we use
verbal features, we reach results that are only slightly below the STTS results. For the subset using
number + person features, the difference is around 2 percent points. However, all subsets perform worse
than the STTS. The subsets that include case or all agreement features, which are the subsets most
relevant for parsing, reach accuracies that are slightly above STTSmorph, but still more than 10 percent
points below the original STTS.

6 Parsing Results

In this section, we report parsing results for TiGer in table 7 and for TüBa-D/Z in table 8. We again
use the three POS tag variants as input, and we report results for 1) gold POS tags, 2) for tags assigned
by TnT, which proved to be the most reliable POS tagger across different settings, and 3) for POS tags
assigned by the Berkeley parser. Since the parser is known to alter POS tags given as input if they do not
fit the syntax model, we also report POS tagging accuracy. Note that this behavior of the parser explains
why we do not necessarily have a 100% POS tagging accuracy in the gold POS tag setting.

A first glance at the POS tagging results in the gold POS setting in tables 7 and 8 shows that for UTS
and STTS, the decrease in accuracy is minimal. In other words, the parser only changes a few POS tags.
When we compared the differences in POS tags between the output of the parser and the gold standard,
we found that most changes constitute a retagging of common nouns (NN) as proper nouns (NE). In
the STTSmorph setting, POS tagging accuracy is considerably lower, showing that the parser changed
between 8% (UTS) and 25% (STTSmorph) of the POS tags. This is a clear indication that the parser
suffers from data sparseness and has to adapt the POS tags in order to be able to parse the sentences.

We need to compare the POS tagging results based on automatically assigned POS tags; they show
the following trends: For TiGer in the STTS setting, the results based on TnT and on the parser are
very similar. For UTS and STTSmorph, the POS tags assigned by the parser reach a higher accuracy.



dev test
Tag source Tagset POS LP LR LF1 POS LP LR LF1
gold UTS 100.00 77.97 77.23 77.60 99.97 71.80 70.26 71.02

STTS 99.98 78.09 77.55 77.82 99.97 71.90 71.11 71.50
STTSmorph 91.67 74.72 75.21 74.97 88.70 67.68 67.99 67.83

parser UTS 98.55 77.75 76.84 77.29 97.83 71.13 69.50 70.30
STTS 97.25 78.03 77.19 77.60 96.18 71.16 69.84 70.49
STTSmorph 83.06 75.53 75.24 75.39 79.05 67.67 67.02 67.34

TnT UTS 96.56 74.16 73.28 73.72 96.01 68.37 66.78 67.57
STTS 97.26 78.03 77.19 77.60 96.19 71.16 69.84 70.49
STTSmorph 77.94 73.06 72.69 72.88 75.05 65.43 64.78 65.10

Table 7: Parsing results for TiGer.

dev test
Tag source Tagset POS LP LR LF1 POS LP LR LF1
gold UTS 99.98 81.39 81.12 81.26 99.98 82.24 81.94 82.09

STTS 100.00 83.60 83.58 83.59 99.99 84.54 84.46 84.50
STTSmorph 89.75 82.27 78.85 80.53 90.55 83.57 79.91 81.70

parser UTS 98.35 79.97 79.61 79.79 98.58 81.07 80.66 80.87
STTS 97.20 81.84 81.65 81.74 97.39 82.93 82.78 82.85
STTSmorph 81.03 80.85 77.22 78.99 81.68 81.89 78.20 80.00

TnT UTS 98.35 79.97 79.61 79.79 98.58 81.07 80.66 80.87
STTS 97.21 81.84 81.65 81.74 97.39 82.93 82.78 82.85
STTSmorph 81.03 80.85 77.22 78.99 81.68 81.89 78.20 80.00

Table 8: Parsing results for TüBa-D/Z.

For TüBa-D/Z, all the results are extremely similar.2 If we compare the POS tagging accuracies of the
parsed sentences and the accuracies of the original POS tags assigned by the tagger, we see that for
TiGer, the accuracy decreases by approximately 1.5 percent points for UTS, 0.1 percent points for STTS
and 9 percent points for STTSmorph. For TüBa-D/Z, the loss in the STTSmorph setting is smaller, at
around 4 percent points. For UTS and STTS, there is a small improvement in POS tagging accuracy.

When we look at the parsing results, we see that gold POS tags always lead to the highest parsing
results, across treebanks and POS tagsets. We also see that across all conditions, the parsing results
for STTS are the highest. For TiGer, the results for UTS are only marginally lower, which seems to
indicate that some of the distinctions made in STTS are important, but not all of them. For TüBa-D/Z,
the loss for UTS is more pronounced, at around 2 percent points. This suggests that for the TüBa-D/Z
annotation scheme, the more fined grained distinctions in STTS are more important than for UTS. One
example would be the distinction between finite and infinite verbs, which is directly projected to the verb
group in TüBa-D/Z (see the verb groups VXFIN and VXINF in figure 2). Note also that for Tüba-D/Z,
the parsing based on automatic POS tagging outperforms parsing based on gold UTS tags, thus again
confirming how important the granularity of STTS is for this treebank.

When we look at the parsing results for STTSmorph, it is obvious that this POS tagset variant leads
to the lowest parsing results, even in the gold POS setting. This means that even though agreement
information should be helpful for assigning grammatical functions, the information seems to be presented
to the parser in a form that it cannot exploit properly. We also performed preliminary experiments using
the morphological variants discussed in section 5.3 in parsing, but the results did not improve over the
STTS baseline.

When we compare the two sets of automatically assigned POS tags for TiGer, we see that the difference

2Because of the (almost) identical results, we checked our results with extreme care but could not find any errors.



in POS accuracy for UTS is 1.8 percent points while the difference in F-scores is 2.5 percent points. This
means that TnT tagging errors have a more negative impact on parsing quality than those in the POS
tags assigned by the parser itself. For STTSmorph, the difference is more pronounced in POS accuracy
(4 points as opposed to 2.2 in F-scores), which means that for STTSmorph, TnT errors are less harmful
than for UTS. We assume that this is the case because in many instances, the POS tags themselves will
be correct, and the error occurs in the morphological features. For TüBa-D/Z, the difference between
UTS and STTSmorph is marginal; this is due to the fact that UTS results are much lower than for TiGer.
Thus, the difference between STTS and STTSmorph is stable across both treebanks.

A more in-depth investigation of the results shows that the aggregate EVALB score tends to hide indi-
vidual large differences between single sentences in the results. For example, in the results for the TiGer
dev set with gold POS tags, there are 119 sentences in STTSmorph which have an STTS counterpart with
an F-score that is at least 50 points higher. However, there are also 28 sentences for which the opposite
holds, i.e., for which STTSmorph wins over STTS. In TüBa-D/Z, there are fewer sentences with such
extreme differences. There are 28 / 11 sentences with a score difference of 50 points or more between
STTS and STTSmorph in the TüBa-D/Z development set, and vice versa. A manual inspection of the
results indicates that in some cases, the morphology is passed up into the tree and thereby contributes
to a correct grammatical function of a phrase label (such as for case information) while in other cases,
it causes an over-differentiation of grammatical functions and thereby has a detrimental effect (such as
for PPs, which are attached incorrectly). In the case of TüBa-D/Z, this leads to trees with substructures
that are too flat, while in the case of TiGer, it leads to more hierarchical substructures. This finding is
corroborated by a further comparison of the number of edges produced by the parser, which reveals that
for the case of TiGer, the number of edges grows with the size of the POS tagset, while for the case of
TüBa-D/Z, the number of edges produced with STTS is higher than with UTS, but drops considerably
for STTSmorph. The large differences in results for single sentences look more pronounced in TiGer due
to the average number of edges per sentence (7.60/8.72 for dev/test gold), which is much lower than for
TüBa-D/Z (20.93/21.16 for dev/test gold); in other words, because of its flat annotation. We suspect that
there is data sparsity involved, but this needs to be investigated further.

7 Conclusion and Future Work

We have investigated how the granularity of POS tags influences POS tagging, and furthermore, how POS
tagging performance relates to parsing results, on the basis of experiments on two German treebanks,
using three POS tagsets of different granularity (UTS, STTS, and STTSmorph), and six different POS
taggers, together with the Berkeley parser.

We have shown that the tagging task is easier the less granular the tagset is. Furthermore, we have
shown that both too coarse-grained and too fine-grained distinctions on POS level hurt parsing perfor-
mance. The results for the morphological tagset are thus in direct contrast to previous studies, such as
(Dehdari et al., 2011; Marton et al., 2013; Seddah et al., 2009; Szántó and Farkas, 2014), which show
for different languages that adding morphological information increases parsing accuracy. Surprisingly,
given the STTS tagset, the Berkeley parser itself was able to deliver a POS tagging performance which
was almost identical to the performance of the best tagger, TnT. Additionally, we can conclude that the
choice of the tagset and of the best POS tagger for a given treebank does not only depend on the language
but also on the annotation scheme.

In future work, we will undertake a systematic investigation of tag clustering methods in order to find a
truly optimally granular POS tagset. We will also investigate the exact relation between annotation depth
and the granularity of the POS tagset with regard to parsing accuracy and data sparsity. The latter may
elucidate reasons behind the differences between our results and those of the previous studies mentioned
above.
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